Hmdb loader
Survey
You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Identification
HMDB Protein ID HMDBP13478
Secondary Accession Numbers None
Name Procathepsin L
Synonyms
  1. Cathepsin L1
  2. Major excreted protein
  3. MEP
Gene Name CTSL
Protein Type Unknown
Biological Properties
General Function Not Available
Specific Function Thiol protease important for the overall degradation of proteins in lysosomes (Probable). Plays a critical for normal cellular functions such as general protein turnover, antigen processing and bone remodeling. Involved in the solubilization of cross-linked TG/thyroglobulin and in the subsequent release of thyroid hormone thyroxine (T4) by limited proteolysis of TG/thyroglobulin in the thyroid follicle lumen (By similarity). In neuroendocrine chromaffin cells secretory vesicles, catalyzes the prohormone proenkephalin processing to the active enkephalin peptide neurotransmitter (By similarity). In thymus, regulates CD4(+) T cell positive selection by generating the major histocompatibility complex class II (MHCII) bound peptide ligands presented by cortical thymic epithelial cells. Also mediates invariant chain processing in cortical thymic epithelial cells (By similarity). Major elastin-degrading enzyme at neutral pH. Accumulates as a mature and active enzyme in the extracellular space of antigen presenting cells (APCs) to regulate degradation of the extracellular matrix in the course of inflammation (By similarity). Secreted form generates endostatin from COL18A1 (PubMed:10716919). Critical for cardiac morphology and function. Plays an important role in hair follicle morphogenesis and cycling, as well as epidermal differentiation (By similarity). Required for maximal stimulation of steroidogenesis by TIMP1 (By similarity).Functions in the regulation of cell cycle progression through proteolytic processing of the CUX1 transcription factor (PubMed:15099520). Translation initiation at downstream start sites allows the synthesis of isoforms that are devoid of a signal peptide and localize to the nucleus where they cleave the CUX1 transcription factor and modify its DNA binding properties (PubMed:15099520).(Microbial infection) Facilitates human coronaviruses SARS-CoV and SARS-CoV-2 infections via proteolysis of coronavirus spike (S) glycoproteins in lysosome for entry into host cell (PubMed:32142651, PubMed:32221306, PubMed:16339146, PubMed:18562523). Proteolysis within lysosomes is sufficient to activate membrane fusion by coronaviruses SARS-CoV and EMC (HCoV-EMC) S as well as Zaire ebolavirus glycoproteins (PubMed:16081529, PubMed:26953343, PubMed:18562523).
Pathways
  • Antigen processing and presentation
  • Apoptosis
  • Autophagy - animal
  • Fluid shear stress and atherosclerosis
  • Lysosome
  • Phagosome
  • Proteoglycans in cancer
  • Rheumatoid arthritis
Reactions Not Available
GO Classification
Biological Process
viral entry into host cell
protein autoprocessing
viral entry into host cell via membrane fusion with the plasma membrane
elastin catabolic process
extracellular matrix disassembly
collagen catabolic process
immune response
proteolysis
adaptive immune response
toll-like receptor signaling pathway
antigen processing and presentation of exogenous peptide antigen via MHC class II
antigen processing and presentation of peptide antigen
CD4-positive, alpha-beta T cell lineage commitment
enkephalin processing
proteolysis involved in cellular protein catabolic process
zymogen activation
antigen processing and presentation
cellular response to thyroid hormone stimulus
fusion of virus membrane with host endosome membrane
macrophage apoptotic process
receptor-mediated endocytosis of virus by host cell
regulation of keratinocyte differentiation
Cellular Component
extracellular vesicular exosome
plasma membrane
Golgi apparatus
nucleus
chromaffin granule
lysosomal lumen
multivesicular body
lysosome
extracellular region
collagen-containing extracellular matrix
extracellular space
apical plasma membrane
intracellular membrane-bounded organelle
endocytic vesicle lumen
endolysosome lumen
Molecular Function
proteoglycan binding
collagen binding
cysteine-type endopeptidase activity
fibronectin binding
histone binding
cysteine-type peptidase activity
serpin family protein binding
Cellular Location Not Available
Gene Properties
Chromosome Location Not Available
Locus Not Available
SNPs Not Available
Gene Sequence Not Available
Protein Properties
Number of Residues 333
Molecular Weight 37563.97
Theoretical pI 5.452
Pfam Domain Function
Signals
  • 1-17;
Transmembrane Regions Not Available
Protein Sequence Not Available
GenBank ID Protein Not Available
UniProtKB/Swiss-Prot ID P07711
UniProtKB/Swiss-Prot Entry Name CATL1_HUMAN
PDB IDs
GenBank Gene ID Not Available
GeneCard ID Not Available
GenAtlas ID Not Available
HGNC ID Not Available
References
General References
  1. Chen R, Jiang X, Sun D, Han G, Wang F, Ye M, Wang L, Zou H: Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. J Proteome Res. 2009 Feb;8(2):651-61. doi: 10.1021/pr8008012. [PubMed:19159218 ]
  2. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [PubMed:15489334 ]
  3. Humphray SJ, Oliver K, Hunt AR, Plumb RW, Loveland JE, Howe KL, Andrews TD, Searle S, Hunt SE, Scott CE, Jones MC, Ainscough R, Almeida JP, Ambrose KD, Ashwell RI, Babbage AK, Babbage S, Bagguley CL, Bailey J, Banerjee R, Barker DJ, Barlow KF, Bates K, Beasley H, Beasley O, Bird CP, Bray-Allen S, Brown AJ, Brown JY, Burford D, Burrill W, Burton J, Carder C, Carter NP, Chapman JC, Chen Y, Clarke G, Clark SY, Clee CM, Clegg S, Collier RE, Corby N, Crosier M, Cummings AT, Davies J, Dhami P, Dunn M, Dutta I, Dyer LW, Earthrowl ME, Faulkner L, Fleming CJ, Frankish A, Frankland JA, French L, Fricker DG, Garner P, Garnett J, Ghori J, Gilbert JG, Glison C, Grafham DV, Gribble S, Griffiths C, Griffiths-Jones S, Grocock R, Guy J, Hall RE, Hammond S, Harley JL, Harrison ES, Hart EA, Heath PD, Henderson CD, Hopkins BL, Howard PJ, Howden PJ, Huckle E, Johnson C, Johnson D, Joy AA, Kay M, Keenan S, Kershaw JK, Kimberley AM, King A, Knights A, Laird GK, Langford C, Lawlor S, Leongamornlert DA, Leversha M, Lloyd C, Lloyd DM, Lovell J, Martin S, Mashreghi-Mohammadi M, Matthews L, McLaren S, McLay KE, McMurray A, Milne S, Nickerson T, Nisbett J, Nordsiek G, Pearce AV, Peck AI, Porter KM, Pandian R, Pelan S, Phillimore B, Povey S, Ramsey Y, Rand V, Scharfe M, Sehra HK, Shownkeen R, Sims SK, Skuce CD, Smith M, Steward CA, Swarbreck D, Sycamore N, Tester J, Thorpe A, Tracey A, Tromans A, Thomas DW, Wall M, Wallis JM, West AP, Whitehead SL, Willey DL, Williams SA, Wilming L, Wray PW, Young L, Ashurst JL, Coulson A, Blocker H, Durbin R, Sulston JE, Hubbard T, Jackson MJ, Bentley DR, Beck S, Rogers J, Dunham I: DNA sequence and analysis of human chromosome 9. Nature. 2004 May 27;429(6990):369-74. [PubMed:15164053 ]
  4. Bechtel S, Rosenfelder H, Duda A, Schmidt CP, Ernst U, Wellenreuther R, Mehrle A, Schuster C, Bahr A, Blocker H, Heubner D, Hoerlein A, Michel G, Wedler H, Kohrer K, Ottenwalder B, Poustka A, Wiemann S, Schupp I: The full-ORF clone resource of the German cDNA Consortium. BMC Genomics. 2007 Oct 31;8:399. [PubMed:17974005 ]
  5. Liu T, Qian WJ, Gritsenko MA, Camp DG 2nd, Monroe ME, Moore RJ, Smith RD: Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J Proteome Res. 2005 Nov-Dec;4(6):2070-80. [PubMed:16335952 ]
  6. Zhang H, Li XJ, Martin DB, Aebersold R: Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol. 2003 Jun;21(6):660-6. Epub 2003 May 18. [PubMed:12754519 ]
  7. Gal S, Gottesman MM: Isolation and sequence of a cDNA for human pro-(cathepsin L). Biochem J. 1988 Jul 1;253(1):303-6. [PubMed:3421948 ]
  8. Joseph LJ, Chang LC, Stamenkovich D, Sukhatme VP: Complete nucleotide and deduced amino acid sequences of human and murine preprocathepsin L. An abundant transcript induced by transformation of fibroblasts. J Clin Invest. 1988 May;81(5):1621-9. [PubMed:2835398 ]
  9. Ritonja A, Popovic T, Kotnik M, Machleidt W, Turk V: Amino acid sequences of the human kidney cathepsins H and L. FEBS Lett. 1988 Feb 15;228(2):341-5. [PubMed:3342889 ]
  10. Joseph L, Lapid S, Sukhatme V: The major ras induced protein in NIH3T3 cells is cathepsin L. Nucleic Acids Res. 1987 Apr 10;15(7):3186. [PubMed:3550705 ]
  11. Mason RW, Walker JE, Northrop FD: The N-terminal amino acid sequences of the heavy and light chains of human cathepsin L. Relationship to a cDNA clone for a major cysteine proteinase from a mouse macrophage cell line. Biochem J. 1986 Dec 1;240(2):373-7. [PubMed:3545185 ]
  12. Coulombe R, Grochulski P, Sivaraman J, Menard R, Mort JS, Cygler M: Structure of human procathepsin L reveals the molecular basis of inhibition by the prosegment. EMBO J. 1996 Oct 15;15(20):5492-503. [PubMed:8896443 ]
  13. Fujishima A, Imai Y, Nomura T, Fujisawa Y, Yamamoto Y, Sugawara T: The crystal structure of human cathepsin L complexed with E-64. FEBS Lett. 1997 Apr 21;407(1):47-50. [PubMed:9141479 ]
  14. Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Burckstummer T, Bennett KL, Superti-Furga G, Colinge J: Initial characterization of the human central proteome. BMC Syst Biol. 2011 Jan 26;5:17. doi: 10.1186/1752-0509-5-17. [PubMed:21269460 ]
  15. Bian Y, Song C, Cheng K, Dong M, Wang F, Huang J, Sun D, Wang L, Ye M, Zou H: An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics. 2014 Jan 16;96:253-62. doi: 10.1016/j.jprot.2013.11.014. Epub 2013 Nov 22. [PubMed:24275569 ]
  16. Felbor U, Dreier L, Bryant RA, Ploegh HL, Olsen BR, Mothes W: Secreted cathepsin L generates endostatin from collagen XVIII. EMBO J. 2000 Mar 15;19(6):1187-94. doi: 10.1093/emboj/19.6.1187. [PubMed:10716919 ]
  17. Goulet B, Baruch A, Moon NS, Poirier M, Sansregret LL, Erickson A, Bogyo M, Nepveu A: A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in S phase and processes the CDP/Cux transcription factor. Mol Cell. 2004 Apr 23;14(2):207-19. doi: 10.1016/s1097-2765(04)00209-6. [PubMed:15099520 ]
  18. Menard R, Carmona E, Takebe S, Dufour E, Plouffe C, Mason P, Mort JS: Autocatalytic processing of recombinant human procathepsin L. Contribution of both intermolecular and unimolecular events in the processing of procathepsin L in vitro. J Biol Chem. 1998 Feb 20;273(8):4478-84. doi: 10.1074/jbc.273.8.4478. [PubMed:9468501 ]
  19. Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL, Bates P: Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11876-81. doi: 10.1073/pnas.0505577102. Epub 2005 Aug 4. [PubMed:16081529 ]
  20. Huang IC, Bosch BJ, Li F, Li W, Lee KH, Ghiran S, Vasilieva N, Dermody TS, Harrison SC, Dormitzer PR, Farzan M, Rottier PJ, Choe H: SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells. J Biol Chem. 2006 Feb 10;281(6):3198-203. doi: 10.1074/jbc.M508381200. Epub 2005 Dec 8. [PubMed:16339146 ]
  21. Bosch BJ, Bartelink W, Rottier PJ: Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide. J Virol. 2008 Sep;82(17):8887-90. doi: 10.1128/JVI.00415-08. Epub 2008 Jun 18. [PubMed:18562523 ]
  22. Rosenow A, Noben JP, Jocken J, Kallendrusch S, Fischer-Posovszky P, Mariman EC, Renes J: Resveratrol-induced changes of the human adipocyte secretion profile. J Proteome Res. 2012 Sep 7;11(9):4733-43. doi: 10.1021/pr300539b. Epub 2012 Aug 27. [PubMed:22905912 ]
  23. Zhou N, Pan T, Zhang J, Li Q, Zhang X, Bai C, Huang F, Peng T, Zhang J, Liu C, Tao L, Zhang H: Glycopeptide Antibiotics Potently Inhibit Cathepsin L in the Late Endosome/Lysosome and Block the Entry of Ebola Virus, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV). J Biol Chem. 2016 Apr 22;291(17):9218-32. doi: 10.1074/jbc.M116.716100. Epub 2016 Mar 7. [PubMed:26953343 ]
  24. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Muller MA, Drosten C, Pohlmann S: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 Apr 16;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052. Epub 2020 Mar 5. [PubMed:32142651 ]
  25. Smieszek SP, Przychodzen BP, Polymeropoulos MH: Amantadine disrupts lysosomal gene expression: A hypothesis for COVID19 treatment. Int J Antimicrob Agents. 2020 Jun;55(6):106004. doi: 10.1016/j.ijantimicag.2020.106004. Epub 2020 Apr 30. [PubMed:32361028 ]
  26. Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J, Xiang Z, Mu Z, Chen X, Chen J, Hu K, Jin Q, Wang J, Qian Z: Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020 Mar 27;11(1):1620. doi: 10.1038/s41467-020-15562-9. [PubMed:32221306 ]
  27. Bruchez A, Sha K, Johnson J, Chen L, Stefani C, McConnell H, Gaucherand L, Prins R, Matreyek KA, Hume AJ, Muhlberger E, Schmidt EV, Olinger GG, Stuart LM, Lacy-Hulbert A: MHC class II transactivator CIITA induces cell resistance to Ebola virus and SARS-like coronaviruses. Science. 2020 Oct 9;370(6513):241-247. doi: 10.1126/science.abb3753. Epub 2020 Aug 27. [PubMed:32855215 ]