Hmdb loader
Identification
HMDB Protein ID HMDBP13492
Secondary Accession Numbers None
Name Prolyl endopeptidase FAP
Synonyms
  1. Dipeptidyl peptidase FAP
  2. Fibroblast activation protein alpha
  3. Gelatine degradation protease FAP
  4. Integral membrane serine protease
  5. Post-proline cleaving enzyme
  6. Serine integral membrane protease
  7. Surface-expressed protease
  8. FAPalpha
  9. SIMP
  10. Seprase
Gene Name FAP
Protein Type Unknown
Biological Properties
General Function Not Available
Specific Function Cell surface glycoprotein serine protease that participates in extracellular matrix degradation and involved in many cellular processes including tissue remodeling, fibrosis, wound healing, inflammation and tumor growth. Both plasma membrane and soluble forms exhibit post-proline cleaving endopeptidase activity, with a marked preference for Ala/Ser-Gly-Pro-Ser/Asn/Ala consensus sequences, on substrate such as alpha-2-antiplasmin SERPINF2 and SPRY2. Degrade also gelatin, heat-denatured type I collagen, but not native collagen type I and IV, vibronectin, tenascin, laminin, fibronectin, fibrin or casein. Also has dipeptidyl peptidase activity, exhibiting the ability to hydrolyze the prolyl bond two residues from the N-terminus of synthetic dipeptide substrates provided that the penultimate residue is proline, with a preference for Ala-Pro, Ile-Pro, Gly-Pro, Arg-Pro and Pro-Pro. Natural neuropeptide hormones for dipeptidyl peptidase are the neuropeptide Y (NPY), peptide YY (PYY), substance P (TAC1) and brain natriuretic peptide 32 (NPPB). The plasma membrane form, in association with either DPP4, PLAUR or integrins, is involved in the pericellular proteolysis of the extracellular matrix (ECM), and hence promotes cell adhesion, migration and invasion through the ECM. Plays a role in tissue remodeling during development and wound healing. Participates in the cell invasiveness towards the ECM in malignant melanoma cancers. Enhances tumor growth progression by increasing angiogenesis, collagen fiber degradation and apoptosis and by reducing antitumor response of the immune system. Promotes glioma cell invasion through the brain parenchyma by degrading the proteoglycan brevican. Acts as a tumor suppressor in melanocytic cells through regulation of cell proliferation and survival in a serine protease activity-independent manner.
Pathways Not Available
Reactions Not Available
GO Classification
Biological Process
melanocyte apoptotic process
melanocyte proliferation
negative regulation of cell proliferation involved in contact inhibition
negative regulation of extracellular matrix disassembly
negative regulation of extracellular matrix organization
positive regulation of cell cycle arrest
positive regulation of execution phase of apoptosis
regulation of collagen catabolic process
cell adhesion
endothelial cell migration
angiogenesis
proteolysis
mitotic cell cycle arrest
proteolysis involved in cellular protein catabolic process
Cellular Component
cell surface
peptidase complex
apical part of cell
basal part of cell
plasma membrane
cell junction
ruffle membrane
lamellipodium membrane
lamellipodium
extracellular space
integral to membrane
Molecular Function
protease binding
dipeptidyl-peptidase activity
endopeptidase activity
peptidase activity
integrin binding
protein homodimerization activity
serine-type peptidase activity
serine-type endopeptidase activity
identical protein binding
Cellular Location Not Available
Gene Properties
Chromosome Location Not Available
Locus Not Available
SNPs Not Available
Gene Sequence Not Available
Protein Properties
Number of Residues 761
Molecular Weight 87944.01
Theoretical pI 7.084
Pfam Domain Function
Signals Not Available
Transmembrane Regions
  • 5-25;
Protein Sequence Not Available
GenBank ID Protein Not Available
UniProtKB/Swiss-Prot ID P97321
UniProtKB/Swiss-Prot Entry Name SEPR_MOUSE
PDB IDs Not Available
GenBank Gene ID Not Available
GeneCard ID Not Available
GenAtlas ID Not Available
HGNC ID Not Available
References
General References
  1. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [PubMed:15489334 ]
  2. Keane FM, Yao TW, Seelk S, Gall MG, Chowdhury S, Poplawski SE, Lai JH, Li Y, Wu W, Farrell P, Vieira de Ribeiro AJ, Osborne B, Yu DM, Seth D, Rahman K, Haber P, Topaloglu AK, Wang C, Thomson S, Hennessy A, Prins J, Twigg SM, McLennan SV, McCaughan GW, Bachovchin WW, Gorrell MD: Quantitation of fibroblast activation protein (FAP)-specific protease activity in mouse, baboon and human fluids and organs. FEBS Open Bio. 2013 Dec 8;4:43-54. doi: 10.1016/j.fob.2013.12.001. eCollection 2013. [PubMed:24371721 ]
  3. Niedermeyer J, Scanlan MJ, Garin-Chesa P, Daiber C, Fiebig HH, Old LJ, Rettig WJ, Schnapp A: Mouse fibroblast activation protein: molecular cloning, alternative splicing and expression in the reactive stroma of epithelial cancers. Int J Cancer. 1997 May 2;71(3):383-9. doi: 10.1002/(sici)1097-0215(19970502)71:3<383::aid-ijc14>3.0.co;2-h. [PubMed:9139873 ]
  4. Niedermeyer J, Enenkel B, Park JE, Lenter M, Rettig WJ, Damm K, Schnapp A: Mouse fibroblast-activation protein--conserved Fap gene organization and biochemical function as a serine protease. Eur J Biochem. 1998 Jun 15;254(3):650-4. doi: 10.1046/j.1432-1327.1998.2540650.x. [PubMed:9688278 ]
  5. Niedermeyer J, Kriz M, Hilberg F, Garin-Chesa P, Bamberger U, Lenter MC, Park J, Viertel B, Puschner H, Mauz M, Rettig WJ, Schnapp A: Targeted disruption of mouse fibroblast activation protein. Mol Cell Biol. 2000 Feb;20(3):1089-94. doi: 10.1128/MCB.20.3.1089-1094.2000. [PubMed:10629066 ]
  6. Niedermeyer J, Garin-Chesa P, Kriz M, Hilberg F, Mueller E, Bamberger U, Rettig WJ, Schnapp A: Expression of the fibroblast activation protein during mouse embryo development. Int J Dev Biol. 2001 Apr;45(2):445-7. [PubMed:11330865 ]
  7. Ramirez-Montagut T, Blachere NE, Sviderskaya EV, Bennett DC, Rettig WJ, Garin-Chesa P, Houghton AN: FAPalpha, a surface peptidase expressed during wound healing, is a tumor suppressor. Oncogene. 2004 Jul 15;23(32):5435-46. doi: 10.1038/sj.onc.1207730. [PubMed:15133496 ]
  8. Cai F, Li Z, Wang C, Xian S, Xu G, Peng F, Wei Y, Lu Y: Short hairpin RNA targeting of fibroblast activation protein inhibits tumor growth and improves the tumor microenvironment in a mouse model. BMB Rep. 2013 May;46(5):252-7. doi: 10.5483/bmbrep.2013.46.5.172. [PubMed:23710635 ]