Hmdb loader
Identification
HMDB Protein ID HMDBP13758
Secondary Accession Numbers None
Name Monocyte differentiation antigen CD14
Synonyms
  1. Myeloid cell-specific leucine-rich glycoprotein
Gene Name CD14
Protein Type Unknown
Biological Properties
General Function Not Available
Specific Function Coreceptor for bacterial lipopolysaccharide (PubMed:1698311, PubMed:23264655). In concert with LBP, binds to monomeric lipopolysaccharide and delivers it to the LY96/TLR4 complex, thereby mediating the innate immune response to bacterial lipopolysaccharide (LPS) (PubMed:20133493, PubMed:23264655, PubMed:22265692). Acts via MyD88, TIRAP and TRAF6, leading to NF-kappa-B activation, cytokine secretion and the inflammatory response (PubMed:8612135). Acts as a coreceptor for TLR2:TLR6 heterodimer in response to diacylated lipopeptides and for TLR2:TLR1 heterodimer in response to triacylated lipopeptides, these clusters trigger signaling from the cell surface and subsequently are targeted to the Golgi in a lipid-raft dependent pathway (PubMed:16880211). Binds electronegative LDL (LDL(-)) and mediates the cytokine release induced by LDL(-) (PubMed:23880187).
Pathways
  • Acute myeloid leukemia
  • Amoebiasis
  • Hematopoietic cell lineage
  • Legionellosis
  • Lipid and atherosclerosis
  • MAPK signaling pathway
  • NF-kappa B signaling pathway
  • Pertussis
  • Phagosome
  • Salmonella infection
  • Shigellosis
  • Toll-like receptor signaling pathway
  • Transcriptional misregulation in cancer
  • Tuberculosis
Reactions Not Available
GO Classification
Biological Process
apoptotic signaling pathway
cellular response to lipoteichoic acid
cellular response to triacyl bacterial lipopeptide
neutrophil degranulation
positive regulation of interleukin-8 production
toll-like receptor TLR1:TLR2 signaling pathway
apoptotic process
response to electrical stimulus
response to heat
phagocytosis
inflammatory response
response to magnesium ion
response to ethanol
I-kappaB kinase/NF-kappaB cascade
cellular response to lipopolysaccharide
cellular response to molecule of bacterial origin
MyD88-independent toll-like receptor signaling pathway
necroptotic process
positive regulation of endocytosis
cell surface receptor signaling pathway
innate immune response
response to tumor necrosis factor
positive regulation of interferon-gamma production
positive regulation of tumor necrosis factor production
toll-like receptor signaling pathway
negative regulation of MyD88-independent toll-like receptor signaling pathway
cellular response to diacyl bacterial lipopeptide
MyD88-dependent toll-like receptor signaling pathway
lipopolysaccharide-mediated signaling pathway
toll-like receptor 4 signaling pathway
TRIF-dependent toll-like receptor signaling pathway
toll-like receptor TLR6:TLR2 signaling pathway
receptor-mediated endocytosis
positive regulation of type I interferon production
positive regulation of NIK/NF-kappaB signaling
Cellular Component
membrane raft
extracellular vesicular exosome
plasma membrane
Golgi apparatus
lipopolysaccharide receptor complex
extracellular region
extracellular space
anchored to external side of plasma membrane
secretory granule membrane
external side of plasma membrane
endosome membrane
Molecular Function
lipopolysaccharide binding
peptidoglycan receptor activity
lipoteichoic acid binding
opsonin receptor activity
lipopeptide binding
Cellular Location Not Available
Gene Properties
Chromosome Location Not Available
Locus Not Available
SNPs Not Available
Gene Sequence Not Available
Protein Properties
Number of Residues 375
Molecular Weight 40075.7
Theoretical pI 6.23
Pfam Domain Function Not Available
Signals
  • 1-19;
Transmembrane Regions Not Available
Protein Sequence Not Available
GenBank ID Protein Not Available
UniProtKB/Swiss-Prot ID P08571
UniProtKB/Swiss-Prot Entry Name CD14_HUMAN
PDB IDs
GenBank Gene ID Not Available
GeneCard ID Not Available
GenAtlas ID Not Available
HGNC ID Not Available
References
General References
  1. Chen R, Jiang X, Sun D, Han G, Wang F, Ye M, Wang L, Zou H: Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. J Proteome Res. 2009 Feb;8(2):651-61. doi: 10.1021/pr8008012. [PubMed:19159218 ]
  2. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [PubMed:15489334 ]
  3. Liu T, Qian WJ, Gritsenko MA, Camp DG 2nd, Monroe ME, Moore RJ, Smith RD: Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J Proteome Res. 2005 Nov-Dec;4(6):2070-80. [PubMed:16335952 ]
  4. Nilsson J, Ruetschi U, Halim A, Hesse C, Carlsohn E, Brinkmalm G, Larson G: Enrichment of glycopeptides for glycan structure and attachment site identification. Nat Methods. 2009 Nov;6(11):809-11. doi: 10.1038/nmeth.1392. Epub 2009 Oct 18. [PubMed:19838169 ]
  5. Nakajima T, Ohtani H, Satta Y, Uno Y, Akari H, Ishida T, Kimura A: Natural selection in the TLR-related genes in the course of primate evolution. Immunogenetics. 2008 Dec;60(12):727-35. doi: 10.1007/s00251-008-0332-0. Epub 2008 Sep 23. [PubMed:18810425 ]
  6. Bian Y, Song C, Cheng K, Dong M, Wang F, Huang J, Sun D, Wang L, Ye M, Zou H: An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics. 2014 Jan 16;96:253-62. doi: 10.1016/j.jprot.2013.11.014. Epub 2013 Nov 22. [PubMed:24275569 ]
  7. Triantafilou M, Gamper FG, Haston RM, Mouratis MA, Morath S, Hartung T, Triantafilou K: Membrane sorting of toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD36 and intracellular targeting. J Biol Chem. 2006 Oct 13;281(41):31002-11. doi: 10.1074/jbc.M602794200. Epub 2006 Jul 31. [PubMed:16880211 ]
  8. Haziot A, Chen S, Ferrero E, Low MG, Silber R, Goyert SM: The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a phosphatidylinositol linkage. J Immunol. 1988 Jul 15;141(2):547-52. [PubMed:3385210 ]
  9. Ferrero E, Goyert SM: Nucleotide sequence of the gene encoding the monocyte differentiation antigen, CD14. Nucleic Acids Res. 1988 May 11;16(9):4173. doi: 10.1093/nar/16.9.4173. [PubMed:2453848 ]
  10. Setoguchi M, Nasu N, Yoshida S, Higuchi Y, Akizuki S, Yamamoto S: Mouse and human CD14 (myeloid cell-specific leucine-rich glycoprotein) primary structure deduced from cDNA clones. Biochim Biophys Acta. 1989 Jul 7;1008(2):213-22. doi: 10.1016/0167-4781(80)90012-3. [PubMed:2472171 ]
  11. Simmons DL, Tan S, Tenen DG, Nicholson-Weller A, Seed B: Monocyte antigen CD14 is a phospholipid anchored membrane protein. Blood. 1989 Jan;73(1):284-9. [PubMed:2462937 ]
  12. Bazil V, Baudys M, Hilgert I, Stefanova I, Low MG, Zbrozek J, Horejsi V: Structural relationship between the soluble and membrane-bound forms of human monocyte surface glycoprotein CD14. Mol Immunol. 1989 Jul;26(7):657-62. doi: 10.1016/0161-5890(89)90048-5. [PubMed:2779588 ]
  13. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC: CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990 Sep 21;249(4975):1431-3. doi: 10.1126/science.1698311. [PubMed:1698311 ]
  14. Haziot A, Ferrero E, Kontgen F, Hijiya N, Yamamoto S, Silver J, Stewart CL, Goyert SM: Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice. Immunity. 1996 Apr;4(4):407-14. doi: 10.1016/s1074-7613(00)80254-x. [PubMed:8612135 ]
  15. da Silva Correia J, Soldau K, Christen U, Tobias PS, Ulevitch RJ: Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. transfer from CD14 to TLR4 and MD-2. J Biol Chem. 2001 Jun 15;276(24):21129-35. doi: 10.1074/jbc.M009164200. Epub 2001 Mar 26. [PubMed:11274165 ]
  16. Tsukamoto H, Fukudome K, Takao S, Tsuneyoshi N, Kimoto M: Lipopolysaccharide-binding protein-mediated Toll-like receptor 4 dimerization enables rapid signal transduction against lipopolysaccharide stimulation on membrane-associated CD14-expressing cells. Int Immunol. 2010 Apr;22(4):271-80. doi: 10.1093/intimm/dxq005. Epub 2010 Feb 4. [PubMed:20133493 ]
  17. Murakami K, Tanaka M, Usui T, Kawabata D, Shiomi A, Iguchi-Hashimoto M, Shimizu M, Yukawa N, Yoshifuji H, Nojima T, Ohmura K, Fujii T, Umehara H, Mimori T: Follistatin-related protein/follistatin-like 1 evokes an innate immune response via CD14 and toll-like receptor 4. FEBS Lett. 2012 Feb 17;586(4):319-24. doi: 10.1016/j.febslet.2012.01.010. Epub 2012 Jan 17. [PubMed:22265692 ]
  18. Estruch M, Bancells C, Beloki L, Sanchez-Quesada JL, Ordonez-Llanos J, Benitez S: CD14 and TLR4 mediate cytokine release promoted by electronegative LDL in monocytes. Atherosclerosis. 2013 Aug;229(2):356-62. doi: 10.1016/j.atherosclerosis.2013.05.011. Epub 2013 May 18. [PubMed:23880187 ]
  19. Kim SM, Kim BY, Eo SK, Kim CD, Kim K: 27-Hydroxycholesterol up-regulates CD14 and predisposes monocytic cells to superproduction of CCL2 in response to lipopolysaccharide. Biochim Biophys Acta. 2015 Mar;1852(3):442-50. doi: 10.1016/j.bbadis.2014.12.003. Epub 2014 Dec 9. [PubMed:25497142 ]
  20. Yang L, Carrillo M, Wu YM, DiAngelo SL, Silveyra P, Umstead TM, Halstead ES, Davies ML, Hu S, Floros J, McCormack FX, Christensen ND, Chroneos ZC: SP-R210 (Myo18A) Isoforms as Intrinsic Modulators of Macrophage Priming and Activation. PLoS One. 2015 May 12;10(5):e0126576. doi: 10.1371/journal.pone.0126576. eCollection 2015. [PubMed:25965346 ]
  21. Kelley SL, Lukk T, Nair SK, Tapping RI: The crystal structure of human soluble CD14 reveals a bent solenoid with a hydrophobic amino-terminal pocket. J Immunol. 2013 Feb 1;190(3):1304-11. doi: 10.4049/jimmunol.1202446. Epub 2012 Dec 21. [PubMed:23264655 ]