Hmdb loader
You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
HMDB Protein ID HMDBP13799
Secondary Accession Numbers None
Name Heat shock cognate 71 kDa protein
  1. Heat shock 70 kDa protein 8
  2. Lipopolysaccharide-associated protein 1
  3. LAP-1
  4. LPS-associated protein 1
Gene Name HSPA8
Protein Type Unknown
Biological Properties
General Function Not Available
Specific Function Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation (PubMed:21150129, PubMed:21148293, PubMed:24732912, PubMed:27916661, PubMed:23018488). This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones (PubMed:21150129, PubMed:21148293, PubMed:24732912, PubMed:27916661, PubMed:23018488, PubMed:12526792). The co-chaperones have been shown to not only regulate different steps of the ATPase cycle of HSP70, but they also have an individual specificity such that one co-chaperone may promote folding of a substrate while another may promote degradation (PubMed:21150129, PubMed:21148293, PubMed:24732912, PubMed:27916661, PubMed:23018488, PubMed:12526792). The affinity of HSP70 for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. HSP70 goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release. The HSP70-associated co-chaperones are of three types: J-domain co-chaperones HSP40s (stimulate ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-bound to the ATP-bound state thereby promoting substrate release), and the TPR domain chaperones such as HOPX and STUB1 (PubMed:24318877, PubMed:27474739, PubMed:24121476, PubMed:26865365). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed:12526792). Acts as a repressor of transcriptional activation. Inhibits the transcriptional coactivator activity of CITED1 on Smad-mediated transcription. Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. May have a scaffolding role in the spliceosome assembly as it contacts all other components of the core complex. Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:10722728, PubMed:11276205). Participates in the ER-associated degradation (ERAD) quality control pathway in conjunction with J domain-containing co-chaperones and the E3 ligase STUB1 (PubMed:23990462). Interacts with VGF-derived peptide TLQP-21 (PubMed:28934328).
  • Antigen processing and presentation
  • Endocytosis
  • Estrogen signaling pathway
  • Legionellosis
  • Lipid and atherosclerosis
  • Longevity regulating pathway - multiple species
  • MAPK signaling pathway
  • Measles
  • Prion disease
  • Protein processing in endoplasmic reticulum
  • Spliceosome
  • Toxoplasmosis
Reactions Not Available
GO Classification
Biological Process
cellular response to unfolded protein
regulation of postsynapse organization
chaperone cofactor-dependent protein refolding
protein refolding
neutrophil degranulation
regulation of mRNA stability
membrane organization
protein folding
ATP metabolic process
mRNA splicing, via spliceosome
regulation of protein stability
negative regulation of transcription, DNA-dependent
viral reproduction
cellular response to starvation
response to unfolded protein
cytokine-mediated signaling pathway
vesicle-mediated transport
regulation of protein-containing complex assembly
neurotransmitter secretion
chaperone-mediated autophagy
chaperone-mediated autophagy translocation complex disassembly
regulation of cell cycle
chaperone-mediated protein transport involved in chaperone-mediated autophagy
late endosomal microautophagy
post-Golgi vesicle-mediated transport
negative regulation of supramolecular fiber organization
positive regulation by host of viral genome replication
positive regulation of mRNA splicing, via spliceosome
protein targeting to lysosome involved in chaperone-mediated autophagy
regulation of cellular response to heat
regulation of protein complex stability
regulation of protein import
slow axonal transport
Cellular Component
focal adhesion
extracellular vesicular exosome
plasma membrane
blood microparticle
perinuclear region of cytoplasm
terminal button
spliceosomal complex
lysosomal lumen
ribonucleoprotein complex
extracellular region
glutamatergic synapse
presynaptic cytosol
extracellular space
late endosome
ficolin-1-rich granule lumen
lysosomal membrane
secretory granule lumen
chaperone complex
glycinergic synapse
lumenal side of lysosomal membrane
photoreceptor ribbon synapse
postsynaptic cytosol
postsynaptic specialization membrane
Prp19 complex
clathrin-sculpted gamma-aminobutyric acid transport vesicle membrane
Molecular Function
protein folding chaperone
unfolded protein binding
ATP binding
C3HC4-type RING finger domain binding
G protein-coupled receptor binding
ubiquitin protein ligase binding
chaperone binding
phosphatidylserine binding
heat shock protein binding
RNA binding
cadherin binding
ATPase activity
enzyme binding
protein-macromolecule adaptor activity
clathrin-uncoating ATPase activity
MHC class II protein complex binding
misfolded protein binding
Cellular Location Not Available
Gene Properties
Chromosome Location Not Available
Locus Not Available
SNPs Not Available
Gene Sequence Not Available
Protein Properties
Number of Residues 646
Molecular Weight 70897.565
Theoretical pI 5.522
Pfam Domain Function
Signals Not Available
Transmembrane Regions Not Available
Protein Sequence Not Available
GenBank ID Protein Not Available
UniProtKB/Swiss-Prot ID P11142
UniProtKB/Swiss-Prot Entry Name HSP7C_HUMAN
GenBank Gene ID Not Available
GeneCard ID Not Available
GenAtlas ID Not Available
HGNC ID Not Available
General References
  1. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [PubMed:15489334 ]
  2. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M: Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009 Aug 14;325(5942):834-40. doi: 10.1126/science.1175371. Epub 2009 Jul 16. [PubMed:19608861 ]
  3. Mayya V, Lundgren DH, Hwang SI, Rezaul K, Wu L, Eng JK, Rodionov V, Han DK: Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal. 2009 Aug 18;2(84):ra46. doi: 10.1126/scisignal.2000007. [PubMed:19690332 ]
  4. Gauci S, Helbig AO, Slijper M, Krijgsveld J, Heck AJ, Mohammed S: Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem. 2009 Jun 1;81(11):4493-501. doi: 10.1021/ac9004309. [PubMed:19413330 ]
  5. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ: ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007 May 25;316(5828):1160-6. [PubMed:17525332 ]
  6. Chi A, Valencia JC, Hu ZZ, Watabe H, Yamaguchi H, Mangini NJ, Huang H, Canfield VA, Cheng KC, Yang F, Abe R, Yamagishi S, Shabanowitz J, Hearing VJ, Wu C, Appella E, Hunt DF: Proteomic and bioinformatic characterization of the biogenesis and function of melanosomes. J Proteome Res. 2006 Nov;5(11):3135-44. [PubMed:17081065 ]
  7. Wong JJ, Pung YF, Sze NS, Chin KC: HERC5 is an IFN-induced HECT-type E3 protein ligase that mediates type I IFN-induced ISGylation of protein targets. Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10735-40. Epub 2006 Jun 30. [PubMed:16815975 ]
  8. Rasmussen HH, van Damme J, Puype M, Gesser B, Celis JE, Vandekerckhove J: Microsequences of 145 proteins recorded in the two-dimensional gel protein database of normal human epidermal keratinocytes. Electrophoresis. 1992 Dec;13(12):960-9. [PubMed:1286667 ]
  9. Nellist M, Burgers PC, van den Ouweland AM, Halley DJ, Luider TM: Phosphorylation and binding partner analysis of the TSC1-TSC2 complex. Biochem Biophys Res Commun. 2005 Aug 5;333(3):818-26. [PubMed:15963462 ]
  10. Jonson L, Vikesaa J, Krogh A, Nielsen LK, Hansen Tv, Borup R, Johnsen AH, Christiansen J, Nielsen FC: Molecular composition of IMP1 ribonucleoprotein granules. Mol Cell Proteomics. 2007 May;6(5):798-811. Epub 2007 Feb 7. [PubMed:17289661 ]
  11. Takayama S, Bimston DN, Matsuzawa S, Freeman BC, Aime-Sempe C, Xie Z, Morimoto RI, Reed JC: BAG-1 modulates the chaperone activity of Hsp70/Hsc70. EMBO J. 1997 Aug 15;16(16):4887-96. [PubMed:9305631 ]
  12. Imai Y, Soda M, Murakami T, Shoji M, Abe K, Takahashi R: A product of the human gene adjacent to parkin is a component of Lewy bodies and suppresses Pael receptor-induced cell death. J Biol Chem. 2003 Dec 19;278(51):51901-10. Epub 2003 Oct 7. [PubMed:14532270 ]
  13. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal. 2010 Jan 12;3(104):ra3. doi: 10.1126/scisignal.2000475. [PubMed:20068231 ]
  14. Van Damme P, Lasa M, Polevoda B, Gazquez C, Elosegui-Artola A, Kim DS, De Juan-Pardo E, Demeyer K, Hole K, Larrea E, Timmerman E, Prieto J, Arnesen T, Sherman F, Gevaert K, Aldabe R: N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB. Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12449-54. doi: 10.1073/pnas.1210303109. Epub 2012 Jul 18. [PubMed:22814378 ]
  15. Zhou H, Di Palma S, Preisinger C, Peng M, Polat AN, Heck AJ, Mohammed S: Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res. 2013 Jan 4;12(1):260-71. doi: 10.1021/pr300630k. Epub 2012 Dec 18. [PubMed:23186163 ]
  16. Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Burckstummer T, Bennett KL, Superti-Furga G, Colinge J: Initial characterization of the human central proteome. BMC Syst Biol. 2011 Jan 26;5:17. doi: 10.1186/1752-0509-5-17. [PubMed:21269460 ]
  17. Bian Y, Song C, Cheng K, Dong M, Wang F, Huang J, Sun D, Wang L, Ye M, Zou H: An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics. 2014 Jan 16;96:253-62. doi: 10.1016/j.jprot.2013.11.014. Epub 2013 Nov 22. [PubMed:24275569 ]
  18. Vaca Jacome AS, Rabilloud T, Schaeffer-Reiss C, Rompais M, Ayoub D, Lane L, Bairoch A, Van Dorsselaer A, Carapito C: N-terminome analysis of the human mitochondrial proteome. Proteomics. 2015 Jul;15(14):2519-24. doi: 10.1002/pmic.201400617. Epub 2015 Jun 8. [PubMed:25944712 ]
  19. Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M: Proteomic characterization of the human centrosome by protein correlation profiling. Nature. 2003 Dec 4;426(6966):570-4. doi: 10.1038/nature02166. [PubMed:14654843 ]
  20. Rauch JN, Gestwicki JE: Binding of human nucleotide exchange factors to heat shock protein 70 (Hsp70) generates functionally distinct complexes in vitro. J Biol Chem. 2014 Jan 17;289(3):1402-14. doi: 10.1074/jbc.M113.521997. Epub 2013 Dec 5. [PubMed:24318877 ]
  21. Roder K, Werdich AA, Li W, Liu M, Kim TY, Organ-Darling LE, Moshal KS, Hwang JM, Lu Y, Choi BR, MacRae CA, Koren G: RING finger protein RNF207, a novel regulator of cardiac excitation. J Biol Chem. 2014 Dec 5;289(49):33730-40. doi: 10.1074/jbc.M114.592295. Epub 2014 Oct 3. [PubMed:25281747 ]
  22. Hendriks IA, D'Souza RC, Yang B, Verlaan-de Vries M, Mann M, Vertegaal AC: Uncovering global SUMOylation signaling networks in a site-specific manner. Nat Struct Mol Biol. 2014 Oct;21(10):927-36. doi: 10.1038/nsmb.2890. Epub 2014 Sep 14. [PubMed:25218447 ]
  23. Giannakopoulos NV, Luo JK, Papov V, Zou W, Lenschow DJ, Jacobs BS, Borden EC, Li J, Virgin HW, Zhang DE: Proteomic identification of proteins conjugated to ISG15 in mouse and human cells. Biochem Biophys Res Commun. 2005 Oct 21;336(2):496-506. doi: 10.1016/j.bbrc.2005.08.132. [PubMed:16139798 ]
  24. Guo A, Gu H, Zhou J, Mulhern D, Wang Y, Lee KA, Yang V, Aguiar M, Kornhauser J, Jia X, Ren J, Beausoleil SA, Silva JC, Vemulapalli V, Bedford MT, Comb MJ: Immunoaffinity enrichment and mass spectrometry analysis of protein methylation. Mol Cell Proteomics. 2014 Jan;13(1):372-87. doi: 10.1074/mcp.O113.027870. Epub 2013 Oct 15. [PubMed:24129315 ]
  25. Impens F, Radoshevich L, Cossart P, Ribet D: Mapping of SUMO sites and analysis of SUMOylation changes induced by external stimuli. Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12432-7. doi: 10.1073/pnas.1413825111. Epub 2014 Aug 11. [PubMed:25114211 ]
  26. Dworniczak B, Mirault ME: Structure and expression of a human gene coding for a 71 kd heat shock 'cognate' protein. Nucleic Acids Res. 1987 Jul 10;15(13):5181-97. doi: 10.1093/nar/15.13.5181. [PubMed:3037489 ]
  27. Tsukahara F, Yoshioka T, Muraki T: Molecular and functional characterization of HSC54, a novel variant of human heat-shock cognate protein 70. Mol Pharmacol. 2000 Dec;58(6):1257-63. doi: 10.1124/mol.58.6.1257. [PubMed:11093761 ]
  28. Egerton M, Moritz RL, Druker B, Kelso A, Simpson RJ: Identification of the 70kD heat shock cognate protein (Hsc70) and alpha-actinin-1 as novel phosphotyrosine-containing proteins in T lymphocytes. Biochem Biophys Res Commun. 1996 Jul 25;224(3):666-74. doi: 10.1006/bbrc.1996.1082. [PubMed:8713105 ]
  29. Hattori H, Liu YC, Tohnai I, Ueda M, Kaneda T, Kobayashi T, Tanabe K, Ohtsuka K: Intracellular localization and partial amino acid sequence of a stress-inducible 40-kDa protein in HeLa cells. Cell Struct Funct. 1992 Feb;17(1):77-86. doi: 10.1247/csf.17.77. [PubMed:1586970 ]
  30. Takayama S, Krajewski S, Krajewska M, Kitada S, Zapata JM, Kochel K, Knee D, Scudiero D, Tudor G, Miller GJ, Miyashita T, Yamada M, Reed JC: Expression and location of Hsp70/Hsc-binding anti-apoptotic protein BAG-1 and its variants in normal tissues and tumor cell lines. Cancer Res. 1998 Jul 15;58(14):3116-31. [PubMed:9679980 ]
  31. Shi Y, Mosser DD, Morimoto RI: Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev. 1998 Mar 1;12(5):654-66. doi: 10.1101/gad.12.5.654. [PubMed:9499401 ]
  32. Sainis L, Angelidis C, Pagoulatos GN, Lazaridis L: HSC70 interactions with SV40 viral proteins differ between permissive and nonpermissive mammalian cells. Cell Stress Chaperones. 2000 Apr;5(2):132-8. doi: 10.1379/1466-1268(2000)005<0132:hiwsvp>;2. [PubMed:11147964 ]
  33. Yahata T, de Caestecker MP, Lechleider RJ, Andriole S, Roberts AB, Isselbacher KJ, Shioda T: The MSG1 non-DNA-binding transactivator binds to the p300/CBP coactivators, enhancing their functional link to the Smad transcription factors. J Biol Chem. 2000 Mar 24;275(12):8825-34. doi: 10.1074/jbc.275.12.8825. [PubMed:10722728 ]
  34. Young JC, Hoogenraad NJ, Hartl FU: Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell. 2003 Jan 10;112(1):41-50. doi: 10.1016/s0092-8674(02)01250-3. [PubMed:12526792 ]
  35. Liou ST, Wang C: Small glutamine-rich tetratricopeptide repeat-containing protein is composed of three structural units with distinct functions. Arch Biochem Biophys. 2005 Mar 15;435(2):253-63. doi: 10.1016/ [PubMed:15708368 ]
  36. Westhoff B, Chapple JP, van der Spuy J, Hohfeld J, Cheetham ME: HSJ1 is a neuronal shuttling factor for the sorting of chaperone clients to the proteasome. Curr Biol. 2005 Jun 7;15(11):1058-64. doi: 10.1016/j.cub.2005.04.058. [PubMed:15936278 ]
  37. Han C, Chen T, Li N, Yang M, Wan T, Cao X: HDJC9, a novel human type C DnaJ/HSP40 member interacts with and cochaperones HSP70 through the J domain. Biochem Biophys Res Commun. 2007 Feb 9;353(2):280-5. doi: 10.1016/j.bbrc.2006.12.013. Epub 2006 Dec 12. [PubMed:17182002 ]
  38. Arthur JC, Lich JD, Aziz RK, Kotb M, Ting JP: Heat shock protein 90 associates with monarch-1 and regulates its ability to promote degradation of NF-kappaB-inducing kinase. J Immunol. 2007 Nov 1;179(9):6291-6. doi: 10.4049/jimmunol.179.9.6291. [PubMed:17947705 ]
  39. Crevel G, Bennett D, Cotterill S: The human TPR protein TTC4 is a putative Hsp90 co-chaperone which interacts with CDC6 and shows alterations in transformed cells. PLoS One. 2008 Mar 5;3(3):e0001737. doi: 10.1371/journal.pone.0001737. [PubMed:18320024 ]
  40. Garapaty S, Xu CF, Trojer P, Mahajan MA, Neubert TA, Samuels HH: Identification and characterization of a novel nuclear protein complex involved in nuclear hormone receptor-mediated gene regulation. J Biol Chem. 2009 Mar 20;284(12):7542-52. doi: 10.1074/jbc.M805872200. Epub 2009 Jan 8. [PubMed:19131338 ]
  41. Yamamoto YH, Kimura T, Momohara S, Takeuchi M, Tani T, Kimata Y, Kadokura H, Kohno K: A novel ER J-protein DNAJB12 accelerates ER-associated degradation of membrane proteins including CFTR. Cell Struct Funct. 2010;35(2):107-16. doi: 10.1247/csf.10023. Epub 2010 Dec 8. [PubMed:21150129 ]
  42. Hwang CY, Holl J, Rajan D, Lee Y, Kim S, Um M, Kwon KS, Song B: Hsp70 interacts with the retroviral restriction factor TRIM5alpha and assists the folding of TRIM5alpha. J Biol Chem. 2010 Mar 5;285(10):7827-37. doi: 10.1074/jbc.M109.040618. Epub 2010 Jan 6. [PubMed:20053985 ]
  43. Grote M, Wolf E, Will CL, Lemm I, Agafonov DE, Schomburg A, Fischle W, Urlaub H, Luhrmann R: Molecular architecture of the human Prp19/CDC5L complex. Mol Cell Biol. 2010 May;30(9):2105-19. doi: 10.1128/MCB.01505-09. Epub 2010 Feb 22. [PubMed:20176811 ]
  44. Grove DE, Fan CY, Ren HY, Cyr DM: The endoplasmic reticulum-associated Hsp40 DNAJB12 and Hsc70 cooperate to facilitate RMA1 E3-dependent degradation of nascent CFTRDeltaF508. Mol Biol Cell. 2011 Feb 1;22(3):301-14. doi: 10.1091/mbc.E10-09-0760. Epub 2010 Dec 9. [PubMed:21148293 ]
  45. Sopha P, Kadokura H, Yamamoto YH, Takeuchi M, Saito M, Tsuru A, Kohno K: A novel mammalian ER-located J-protein, DNAJB14, can accelerate ERAD of misfolded membrane proteins. Cell Struct Funct. 2012;37(2):177-87. doi: 10.1247/csf.12017. Epub 2012 Sep 27. [PubMed:23018488 ]
  46. Stricher F, Macri C, Ruff M, Muller S: HSPA8/HSC70 chaperone protein: structure, function, and chemical targeting. Autophagy. 2013 Dec;9(12):1937-54. doi: 10.4161/auto.26448. Epub 2013 Oct 8. [PubMed:24121476 ]
  47. Smith MC, Scaglione KM, Assimon VA, Patury S, Thompson AD, Dickey CA, Southworth DR, Paulson HL, Gestwicki JE, Zuiderweg ER: The E3 ubiquitin ligase CHIP and the molecular chaperone Hsc70 form a dynamic, tethered complex. Biochemistry. 2013 Aug 13;52(32):5354-64. doi: 10.1021/bi4009209. Epub 2013 Aug 2. [PubMed:23865999 ]
  48. Chen Z, Barbi J, Bu S, Yang HY, Li Z, Gao Y, Jinasena D, Fu J, Lin F, Chen C, Zhang J, Yu N, Li X, Shan Z, Nie J, Gao Z, Tian H, Li Y, Yao Z, Zheng Y, Park BV, Pan Z, Zhang J, Dang E, Li Z, Wang H, Luo W, Li L, Semenza GL, Zheng SG, Loser K, Tsun A, Greene MI, Pardoll DM, Pan F, Li B: The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity. 2013 Aug 22;39(2):272-85. doi: 10.1016/j.immuni.2013.08.006. [PubMed:23973223 ]
  49. Jakobsson ME, Moen A, Bousset L, Egge-Jacobsen W, Kernstock S, Melki R, Falnes PO: Identification and characterization of a novel human methyltransferase modulating Hsp70 protein function through lysine methylation. J Biol Chem. 2013 Sep 27;288(39):27752-63. doi: 10.1074/jbc.M113.483248. Epub 2013 Aug 6. [PubMed:23921388 ]
  50. Matsumura Y, Sakai J, Skach WR: Endoplasmic reticulum protein quality control is determined by cooperative interactions between Hsp/c70 protein and the CHIP E3 ligase. J Biol Chem. 2013 Oct 25;288(43):31069-79. doi: 10.1074/jbc.M113.479345. Epub 2013 Aug 29. [PubMed:23990462 ]
  51. Hasson SA, Kane LA, Yamano K, Huang CH, Sliter DA, Buehler E, Wang C, Heman-Ackah SM, Hessa T, Guha R, Martin SE, Youle RJ: High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature. 2013 Dec 12;504(7479):291-5. doi: 10.1038/nature12748. Epub 2013 Nov 24. [PubMed:24270810 ]
  52. Choi J, Djebbar S, Fournier A, Labrie C: The co-chaperone DNAJC12 binds to Hsc70 and is upregulated by endoplasmic reticulum stress. Cell Stress Chaperones. 2014 May;19(3):439-46. doi: 10.1007/s12192-013-0471-6. [PubMed:24122553 ]
  53. Li P, Ji M, Lu F, Zhang J, Li H, Cui T, Li Wang X, Tang D, Ji C: Degradation of AF1Q by chaperone-mediated autophagy. Exp Cell Res. 2014 Sep 10;327(1):48-56. doi: 10.1016/j.yexcr.2014.05.013. Epub 2014 May 29. [PubMed:24880125 ]
  54. Goodwin EC, Motamedi N, Lipovsky A, Fernandez-Busnadiego R, DiMaio D: Expression of DNAJB12 or DNAJB14 causes coordinate invasion of the nucleus by membranes associated with a novel nuclear pore structure. PLoS One. 2014 Apr 14;9(4):e94322. doi: 10.1371/journal.pone.0094322. eCollection 2014. [PubMed:24732912 ]
  55. Song J, Kose S, Watanabe A, Son SY, Choi S, Hong H, Yamashita E, Park IY, Imamoto N, Lee SJ: Structural and functional analysis of Hikeshi, a new nuclear transport receptor of Hsp70s. Acta Crystallogr D Biol Crystallogr. 2015 Mar;71(Pt 3):473-83. doi: 10.1107/S1399004714026881. Epub 2015 Feb 26. [PubMed:25760597 ]
  56. Tummala H, Walne AJ, Williams M, Bockett N, Collopy L, Cardoso S, Ellison A, Wynn R, Leblanc T, Fitzgibbon J, Kelsell DP, van Heel DA, Payne E, Plagnol V, Dokal I, Vulliamy T: DNAJC21 Mutations Link a Cancer-Prone Bone Marrow Failure Syndrome to Corruption in 60S Ribosome Subunit Maturation. Am J Hum Genet. 2016 Jul 7;99(1):115-24. doi: 10.1016/j.ajhg.2016.05.002. Epub 2016 Jun 23. [PubMed:27346687 ]
  57. Radons J: The human HSP70 family of chaperones: where do we stand? Cell Stress Chaperones. 2016 May;21(3):379-404. doi: 10.1007/s12192-016-0676-6. Epub 2016 Feb 10. [PubMed:26865365 ]
  58. Rauch JN, Zuiderweg ER, Gestwicki JE: Non-canonical Interactions between Heat Shock Cognate Protein 70 (Hsc70) and Bcl2-associated Anthanogene (BAG) Co-Chaperones Are Important for Client Release. J Biol Chem. 2016 Sep 16;291(38):19848-57. doi: 10.1074/jbc.M116.742502. Epub 2016 Jul 29. [PubMed:27474739 ]
  59. Seo JH, Park JH, Lee EJ, Vo TT, Choi H, Kim JY, Jang JK, Wee HJ, Lee HS, Jang SH, Park ZY, Jeong J, Lee KJ, Seok SH, Park JY, Lee BJ, Lee MN, Oh GT, Kim KW: ARD1-mediated Hsp70 acetylation balances stress-induced protein refolding and degradation. Nat Commun. 2016 Oct 6;7:12882. doi: 10.1038/ncomms12882. [PubMed:27708256 ]
  60. Akhter S, Chakraborty S, Moutinho D, Alvarez-Coiradas E, Rosa I, Vinuela J, Dominguez E, Garcia A, Requena JR: The human VGF-derived bioactive peptide TLQP-21 binds heat shock 71 kDa protein 8 (HSPA8)on the surface of SH-SY5Y cells. PLoS One. 2017 Sep 21;12(9):e0185176. doi: 10.1371/journal.pone.0185176. eCollection 2017. [PubMed:28934328 ]
  61. Li K, Jiang Q, Bai X, Yang YF, Ruan MY, Cai SQ: Tetrameric Assembly of K(+) Channels Requires ER-Located Chaperone Proteins. Mol Cell. 2017 Jan 5;65(1):52-65. doi: 10.1016/j.molcel.2016.10.027. Epub 2016 Dec 1. [PubMed:27916661 ]
  62. Kajander T, Sachs JN, Goldman A, Regan L: Electrostatic interactions of Hsp-organizing protein tetratricopeptide domains with Hsp70 and Hsp90: computational analysis and protein engineering. J Biol Chem. 2009 Sep 11;284(37):25364-74. doi: 10.1074/jbc.M109.033894. Epub 2009 Jul 7. [PubMed:19586912 ]
  63. Williamson DS, Borgognoni J, Clay A, Daniels Z, Dokurno P, Drysdale MJ, Foloppe N, Francis GL, Graham CJ, Howes R, Macias AT, Murray JB, Parsons R, Shaw T, Surgenor AE, Terry L, Wang Y, Wood M, Massey AJ: Novel adenosine-derived inhibitors of 70 kDa heat shock protein, discovered through structure-based design. J Med Chem. 2009 Mar 26;52(6):1510-3. doi: 10.1021/jm801627a. [PubMed:19256508 ]
  64. Macias AT, Williamson DS, Allen N, Borgognoni J, Clay A, Daniels Z, Dokurno P, Drysdale MJ, Francis GL, Graham CJ, Howes R, Matassova N, Murray JB, Parsons R, Shaw T, Surgenor AE, Terry L, Wang Y, Wood M, Massey AJ: Adenosine-derived inhibitors of 78 kDa glucose regulated protein (Grp78) ATPase: insights into isoform selectivity. J Med Chem. 2011 Jun 23;54(12):4034-41. doi: 10.1021/jm101625x. Epub 2011 May 20. [PubMed:21526763 ]