Hmdb loader
You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Identification
HMDB Protein ID HMDBP13802
Secondary Accession Numbers None
Name Heat shock cognate 71 kDa protein
Synonyms
  1. Heat shock 70 kDa protein 8
Gene Name HSPA8
Protein Type Unknown
Biological Properties
General Function Not Available
Specific Function Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones. The co-chaperones have been shown to not only regulate different steps of the ATPase cycle of HSP70, but they also have an individual specificity such that one co-chaperone may promote folding of a substrate while another may promote degradation. The affinity of HSP70 for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. HSP70 goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release. The HSP70-associated co-chaperones are of three types: J-domain co-chaperones HSP40s (stimulate ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-bound to the ATP-bound state thereby promoting substrate release), and the TPR domain chaperones such as HOPX and STUB1. Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70. Acts as a repressor of transcriptional activation. Inhibits the transcriptional coactivator activity of CITED1 on Smad-mediated transcription. Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. May have a scaffolding role in the spliceosome assembly as it contacts all other components of the core complex. Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes. Participates in the ER-associated degradation (ERAD) quality control pathway in conjunction with J domain-containing co-chaperones and the E3 ligase STUB1. Interacts with VGF-derived peptide TLQP-21.
Pathways
  • Antigen processing and presentation
  • Endocytosis
  • Estrogen signaling pathway
  • Legionellosis
  • Lipid and atherosclerosis
  • Longevity regulating pathway - multiple species
  • MAPK signaling pathway
  • Measles
  • Prion disease
  • Protein processing in endoplasmic reticulum
  • Spliceosome
  • Toxoplasmosis
Reactions Not Available
GO Classification
Biological Process
chaperone-mediated protein folding
cellular response to unfolded protein
regulation of postsynapse organization
chaperone cofactor-dependent protein refolding
protein refolding
cellular protein complex disassembly
clathrin coat disassembly
maintenance of postsynaptic specialization structure
modulation by host of viral process
positive regulation of lysosomal membrane permeability
positive regulation of protein refolding
protein folding
ATP metabolic process
positive regulation of proteolysis
positive regulation of phagocytosis
mRNA processing
RNA splicing
regulation of protein stability
positive regulation of catalytic activity
positive regulation of T cell mediated cytotoxicity
negative regulation of transcription, DNA-dependent
negative regulation of cardiac muscle cell apoptotic process
vesicle-mediated transport
protein autophosphorylation
positive regulation of gene expression
protein import into nucleus
chaperone-mediated autophagy
chaperone-mediated autophagy translocation complex disassembly
regulation of cell cycle
chaperone-mediated protein transport involved in chaperone-mediated autophagy
late endosomal microautophagy
negative regulation of supramolecular fiber organization
positive regulation by host of viral genome replication
positive regulation of mRNA splicing, via spliceosome
protein targeting to lysosome involved in chaperone-mediated autophagy
regulation of protein complex stability
slow axonal transport
Cellular Component
cytosol
asymmetric synapse
cell surface
late endosome lumen
membrane raft
lysosomal matrix
messenger ribonucleoprotein complex
neuron spine
protein-containing complex
cytoplasm
photoreceptor inner segment
nucleolus
extracellular vesicular exosome
plasma membrane
dendrite
perinuclear region of cytoplasm
nucleus
autophagosome
synaptic vesicle
terminal button
spliceosomal complex
melanosome
perikaryon
dendritic spine
lysosome
myelin sheath
ribonucleoprotein complex
glutamatergic synapse
postsynapse
presynapse
neuronal cell body
presynaptic cytosol
late endosome
neuron projection
intermediate filament
lysosomal membrane
axon
postsynaptic density
chaperone complex
glycinergic synapse
photoreceptor ribbon synapse
microtubule
postsynaptic cytosol
postsynaptic specialization membrane
dendritic shaft
Prp19 complex
Molecular Function
protein folding chaperone
A1 adenosine receptor binding
prostaglandin binding
unfolded protein binding
ATP binding
C3HC4-type RING finger domain binding
G protein-coupled receptor binding
ubiquitin protein ligase binding
transcription factor binding
receptor binding
chaperone binding
peptide binding
phosphatidylserine binding
heat shock protein binding
RNA binding
ATPase activity
enzyme binding
protein-macromolecule adaptor activity
ADP binding
clathrin-uncoating ATPase activity
misfolded protein binding
Cellular Location Not Available
Gene Properties
Chromosome Location Not Available
Locus Not Available
SNPs Not Available
Gene Sequence Not Available
Protein Properties
Number of Residues 646
Molecular Weight 70870.535
Theoretical pI 5.522
Pfam Domain Function
Signals Not Available
Transmembrane Regions Not Available
Protein Sequence Not Available
GenBank ID Protein Not Available
UniProtKB/Swiss-Prot ID P63017
UniProtKB/Swiss-Prot Entry Name HSP7C_MOUSE
PDB IDs
GenBank Gene ID Not Available
GeneCard ID Not Available
GenAtlas ID Not Available
HGNC ID Not Available
References
General References
  1. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [PubMed:15489334 ]
  2. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest AR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE, Ambesi-Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk AM, Chiu KP, Choudhary V, Christoffels A, Clutterbuck DR, Crowe ML, Dalla E, Dalrymple BP, de Bono B, Della Gatta G, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher CF, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras TR, Gojobori T, Green RE, Gustincich S, Harbers M, Hayashi Y, Hensch TK, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan SP, Kruger A, Kummerfeld SK, Kurochkin IV, Lareau LF, Lazarevic D, Lipovich L, Liu J, Liuni S, McWilliam S, Madan Babu M, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H, Mignone F, Miyake S, Morris K, Mottagui-Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa S, Nori F, Ohara O, Okazaki Y, Orlando V, Pang KC, Pavan WJ, Pavesi G, Pesole G, Petrovsky N, Piazza S, Reed J, Reid JF, Ring BZ, Ringwald M, Rost B, Ruan Y, Salzberg SL, Sandelin A, Schneider C, Schonbach C, Sekiguchi K, Semple CA, Seno S, Sessa L, Sheng Y, Shibata Y, Shimada H, Shimada K, Silva D, Sinclair B, Sperling S, Stupka E, Sugiura K, Sultana R, Takenaka Y, Taki K, Tammoja K, Tan SL, Tang S, Taylor MS, Tegner J, Teichmann SA, Ueda HR, van Nimwegen E, Verardo R, Wei CL, Yagi K, Yamanishi H, Zabarovsky E, Zhu S, Zimmer A, Hide W, Bult C, Grimmond SM, Teasdale RD, Liu ET, Brusic V, Quackenbush J, Wahlestedt C, Mattick JS, Hume DA, Kai C, Sasaki D, Tomaru Y, Fukuda S, Kanamori-Katayama M, Suzuki M, Aoki J, Arakawa T, Iida J, Imamura K, Itoh M, Kato T, Kawaji H, Kawagashira N, Kawashima T, Kojima M, Kondo S, Konno H, Nakano K, Ninomiya N, Nishio T, Okada M, Plessy C, Shibata K, Shiraki T, Suzuki S, Tagami M, Waki K, Watahiki A, Okamura-Oho Y, Suzuki H, Kawai J, Hayashizaki Y: The transcriptional landscape of the mammalian genome. Science. 2005 Sep 2;309(5740):1559-63. [PubMed:16141072 ]
  3. Haag Breese E, Uversky VN, Georgiadis MM, Harrington MA: The disordered amino-terminus of SIMPL interacts with members of the 70-kDa heat-shock protein family. DNA Cell Biol. 2006 Dec;25(12):704-14. [PubMed:17233114 ]
  4. Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villen J, Haas W, Sowa ME, Gygi SP: A tissue-specific atlas of mouse protein phosphorylation and expression. Cell. 2010 Dec 23;143(7):1174-89. doi: 10.1016/j.cell.2010.12.001. [PubMed:21183079 ]
  5. Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, Xie Z, Zhang Y, Zwaans BM, Skinner ME, Lombard DB, Zhao Y: SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell. 2013 Jun 27;50(6):919-30. doi: 10.1016/j.molcel.2013.06.001. [PubMed:23806337 ]
  6. Giannakopoulos NV, Luo JK, Papov V, Zou W, Lenschow DJ, Jacobs BS, Borden EC, Li J, Virgin HW, Zhang DE: Proteomic identification of proteins conjugated to ISG15 in mouse and human cells. Biochem Biophys Res Commun. 2005 Oct 21;336(2):496-506. doi: 10.1016/j.bbrc.2005.08.132. [PubMed:16139798 ]
  7. Guo A, Gu H, Zhou J, Mulhern D, Wang Y, Lee KA, Yang V, Aguiar M, Kornhauser J, Jia X, Ren J, Beausoleil SA, Silva JC, Vemulapalli V, Bedford MT, Comb MJ: Immunoaffinity enrichment and mass spectrometry analysis of protein methylation. Mol Cell Proteomics. 2014 Jan;13(1):372-87. doi: 10.1074/mcp.O113.027870. Epub 2013 Oct 15. [PubMed:24129315 ]
  8. Jakobsson ME, Moen A, Bousset L, Egge-Jacobsen W, Kernstock S, Melki R, Falnes PO: Identification and characterization of a novel human methyltransferase modulating Hsp70 protein function through lysine methylation. J Biol Chem. 2013 Sep 27;288(39):27752-63. doi: 10.1074/jbc.M113.483248. Epub 2013 Aug 6. [PubMed:23921388 ]
  9. Giebel LB, Dworniczak BP, Bautz EK: Developmental regulation of a constitutively expressed mouse mRNA encoding a 72-kDa heat shock-like protein. Dev Biol. 1988 Jan;125(1):200-7. doi: 10.1016/0012-1606(88)90073-5. [PubMed:3334718 ]
  10. Soulier S, Vilotte JL, L'Huillier PJ, Mercier JC: Developmental regulation of murine integrin beta 1 subunit- and Hsc73-encoding genes in mammary gland: sequence of a new mouse Hsc73 cDNA. Gene. 1996 Jun 26;172(2):285-9. doi: 10.1016/0378-1119(96)00169-2. [PubMed:8682318 ]
  11. Hunt CR, Parsian AJ, Goswami PC, Kozak CA: Characterization and expression of the mouse Hsc70 gene. Biochim Biophys Acta. 1999 Mar 19;1444(3):315-25. doi: 10.1016/s0167-4781(98)00285-1. [PubMed:10095055 ]
  12. Liu J, Maxwell ES: Mouse U14 snRNA is encoded in an intron of the mouse cognate hsc70 heat shock gene. Nucleic Acids Res. 1990 Nov 25;18(22):6565-71. doi: 10.1093/nar/18.22.6565. [PubMed:2251119 ]
  13. Hatayama T, Yasuda K, Yasuda K: Association of HSP105 with HSC70 in high molecular mass complexes in mouse FM3A cells. Biochem Biophys Res Commun. 1998 Jul 20;248(2):395-401. doi: 10.1006/bbrc.1998.8979. [PubMed:9675148 ]
  14. Chen Y, Yu M, Dai X, Zogg M, Wen R, Weiler H, Wang D: Critical role for Gimap5 in the survival of mouse hematopoietic stem and progenitor cells. J Exp Med. 2011 May 9;208(5):923-35. doi: 10.1084/jem.20101192. Epub 2011 Apr 18. [PubMed:21502331 ]