Hmdb loader
You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Identification
HMDB Protein ID HMDBP14478
Secondary Accession Numbers None
Name Runt-related transcription factor 3
Synonyms
  1. Acute myeloid leukemia 2 protein
  2. Core-binding factor subunit alpha-3
  3. Oncogene AML-2
  4. Polyomavirus enhancer-binding protein 2 alpha C subunit
  5. SL3-3 enhancer factor 1 alpha C subunit
  6. SL3/AKV core-binding factor alpha C subunit
  7. CBF-alpha-3
  8. PEA2-alpha C
  9. PEBP2-alpha C
Gene Name RUNX3
Protein Type Unknown
Biological Properties
General Function Not Available
Specific Function Forms the heterodimeric complex core-binding factor (CBF) with CBFB. RUNX members modulate the transcription of their target genes through recognizing the core consensus binding sequence 5'-TGTGGT-3', or very rarely, 5'-TGCGGT-3', within their regulatory regions via their runt domain, while CBFB is a non-DNA-binding regulatory subunit that allosterically enhances the sequence-specific DNA-binding capacity of RUNX. The heterodimers bind to the core site of a number of enhancers and promoters, including murine leukemia virus, polyomavirus enhancer, T-cell receptor enhancers, LCK, IL3 and GM-CSF promoters (By similarity). May be involved in the control of cellular proliferation and/or differentiation. In association with ZFHX3, upregulates CDKN1A promoter activity following TGF-beta stimulation (PubMed:20599712). CBF complexes repress ZBTB7B transcription factor during cytotoxic (CD8+) T cell development. They bind to RUNX-binding sequence within the ZBTB7B locus acting as transcriptional silencer and allowing for cytotoxic T cell differentiation. CBF complexes binding to the transcriptional silencer is essential for recruitment of nuclear protein complexes that catalyze epigenetic modifications to establish epigenetic ZBTB7B silencing (By similarity).
Pathways
  • Epstein-Barr virus infection
  • Th1 and Th2 cell differentiation
Reactions Not Available
GO Classification
Biological Process
negative regulation of cell cycle
positive regulation of CD8-positive, alpha-beta T cell differentiation
peripheral nervous system neuron development
chondrocyte differentiation
negative regulation of CD4-positive, alpha-beta T cell differentiation
negative regulation of epithelial cell proliferation
hemopoiesis
regulation of cell differentiation
regulation of transcription from RNA polymerase II promoter
positive regulation of transcription, DNA-dependent
negative regulation of transcription from RNA polymerase II promoter
protein phosphorylation
ossification
response to transforming growth factor beta
neuron differentiation
regulation of transcription, DNA-dependent
Cellular Component
cytosol
core-binding factor complex
cytoplasm
nucleolus
nucleus
nucleoplasm
chromatin
intracellular membrane-bounded organelle
Molecular Function
RNA polymerase II transcription regulatory region sequence-specific DNA binding
sequence-specific DNA binding transcription factor activity
ATP binding
DNA-binding transcription factor activity, RNA polymerase II-specific
RNA polymerase II core promoter proximal region sequence-specific DNA binding
sequence-specific double-stranded DNA binding
Cellular Location Not Available
Gene Properties
Chromosome Location Not Available
Locus Not Available
SNPs Not Available
Gene Sequence Not Available
Protein Properties
Number of Residues 415
Molecular Weight 44355.16
Theoretical pI 9.471
Pfam Domain Function
Signals Not Available
Transmembrane Regions Not Available
Protein Sequence Not Available
GenBank ID Protein Not Available
UniProtKB/Swiss-Prot ID Q13761
UniProtKB/Swiss-Prot Entry Name RUNX3_HUMAN
PDB IDs
GenBank Gene ID Not Available
GeneCard ID Not Available
GenAtlas ID Not Available
HGNC ID Not Available
References
General References
  1. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [PubMed:15489334 ]
  2. Gregory SG, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A, Scott CE, Howe KL, Woodfine K, Spencer CC, Jones MC, Gillson C, Searle S, Zhou Y, Kokocinski F, McDonald L, Evans R, Phillips K, Atkinson A, Cooper R, Jones C, Hall RE, Andrews TD, Lloyd C, Ainscough R, Almeida JP, Ambrose KD, Anderson F, Andrew RW, Ashwell RI, Aubin K, Babbage AK, Bagguley CL, Bailey J, Beasley H, Bethel G, Bird CP, Bray-Allen S, Brown JY, Brown AJ, Buckley D, Burton J, Bye J, Carder C, Chapman JC, Clark SY, Clarke G, Clee C, Cobley V, Collier RE, Corby N, Coville GJ, Davies J, Deadman R, Dunn M, Earthrowl M, Ellington AG, Errington H, Frankish A, Frankland J, French L, Garner P, Garnett J, Gay L, Ghori MR, Gibson R, Gilby LM, Gillett W, Glithero RJ, Grafham DV, Griffiths C, Griffiths-Jones S, Grocock R, Hammond S, Harrison ES, Hart E, Haugen E, Heath PD, Holmes S, Holt K, Howden PJ, Hunt AR, Hunt SE, Hunter G, Isherwood J, James R, Johnson C, Johnson D, Joy A, Kay M, Kershaw JK, Kibukawa M, Kimberley AM, King A, Knights AJ, Lad H, Laird G, Lawlor S, Leongamornlert DA, Lloyd DM, Loveland J, Lovell J, Lush MJ, Lyne R, Martin S, Mashreghi-Mohammadi M, Matthews L, Matthews NS, McLaren S, Milne S, Mistry S, Moore MJ, Nickerson T, O'Dell CN, Oliver K, Palmeiri A, Palmer SA, Parker A, Patel D, Pearce AV, Peck AI, Pelan S, Phelps K, Phillimore BJ, Plumb R, Rajan J, Raymond C, Rouse G, Saenphimmachak C, Sehra HK, Sheridan E, Shownkeen R, Sims S, Skuce CD, Smith M, Steward C, Subramanian S, Sycamore N, Tracey A, Tromans A, Van Helmond Z, Wall M, Wallis JM, White S, Whitehead SL, Wilkinson JE, Willey DL, Williams H, Wilming L, Wray PW, Wu Z, Coulson A, Vaudin M, Sulston JE, Durbin R, Hubbard T, Wooster R, Dunham I, Carter NP, McVean G, Ross MT, Harrow J, Olson MV, Beck S, Rogers J, Bentley DR, Banerjee R, Bryant SP, Burford DC, Burrill WD, Clegg SM, Dhami P, Dovey O, Faulkner LM, Gribble SM, Langford CF, Pandian RD, Porter KM, Prigmore E: The DNA sequence and biological annotation of human chromosome 1. Nature. 2006 May 18;441(7091):315-21. [PubMed:16710414 ]
  3. Cantin GT, Yi W, Lu B, Park SK, Xu T, Lee JD, Yates JR 3rd: Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis. J Proteome Res. 2008 Mar;7(3):1346-51. doi: 10.1021/pr0705441. Epub 2008 Jan 26. [PubMed:18220336 ]
  4. Reed-Inderbitzin E, Moreno-Miralles I, Vanden-Eynden SK, Xie J, Lutterbach B, Durst-Goodwin KL, Luce KS, Irvin BJ, Cleary ML, Brandt SJ, Hiebert SW: RUNX1 associates with histone deacetylases and SUV39H1 to repress transcription. Oncogene. 2006 Sep 21;25(42):5777-86. Epub 2006 May 1. [PubMed:16652147 ]
  5. Hendriks IA, Lyon D, Young C, Jensen LJ, Vertegaal AC, Nielsen ML: Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation. Nat Struct Mol Biol. 2017 Mar;24(3):325-336. doi: 10.1038/nsmb.3366. Epub 2017 Jan 23. [PubMed:28112733 ]
  6. Wijmenga C, Speck NA, Dracopoli NC, Hofker MH, Liu P, Collins FS: Identification of a new murine runt domain-containing gene, Cbfa3, and localization of the human homolog, CBFA3, to chromosome 1p35-pter. Genomics. 1995 Apr 10;26(3):611-4. doi: 10.1016/0888-7543(95)80185-o. [PubMed:7607690 ]
  7. Bae SC, Takahashi E, Zhang YW, Ogawa E, Shigesada K, Namba Y, Satake M, Ito Y: Cloning, mapping and expression of PEBP2 alpha C, a third gene encoding the mammalian Runt domain. Gene. 1995 Jul 4;159(2):245-8. doi: 10.1016/0378-1119(95)00060-j. [PubMed:7622058 ]
  8. Levanon D, Negreanu V, Bernstein Y, Bar-Am I, Avivi L, Groner Y: AML1, AML2, and AML3, the human members of the runt domain gene-family: cDNA structure, expression, and chromosomal localization. Genomics. 1994 Sep 15;23(2):425-32. doi: 10.1006/geno.1994.1519. [PubMed:7835892 ]
  9. Levanon D, Goldstein RE, Bernstein Y, Tang H, Goldenberg D, Stifani S, Paroush Z, Groner Y: Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11590-5. doi: 10.1073/pnas.95.20.11590. [PubMed:9751710 ]
  10. Mabuchi M, Kataoka H, Miura Y, Kim TS, Kawaguchi M, Ebi M, Tanaka M, Mori Y, Kubota E, Mizushima T, Shimura T, Mizoshita T, Tanida S, Kamiya T, Asai K, Joh T: Tumor suppressor, AT motif binding factor 1 (ATBF1), translocates to the nucleus with runt domain transcription factor 3 (RUNX3) in response to TGF-beta signal transduction. Biochem Biophys Res Commun. 2010 Jul 23;398(2):321-5. doi: 10.1016/j.bbrc.2010.06.090. Epub 2010 Jun 25. [PubMed:20599712 ]
  11. Goh YM, Cinghu S, Hong ETH, Lee YS, Kim JH, Jang JW, Li YH, Chi XZ, Lee KS, Wee H, Ito Y, Oh BC, Bae SC: Src kinase phosphorylates RUNX3 at tyrosine residues and localizes the protein in the cytoplasm. J Biol Chem. 2010 Mar 26;285(13):10122-10129. doi: 10.1074/jbc.M109.071381. Epub 2010 Jan 25. [PubMed:20100835 ]