Hmdb loader
You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
HMDB Protein ID HMDBP14506
Secondary Accession Numbers None
Name Mothers against decapentaplegic homolog 2
  1. MAD homolog 2
  2. Mothers against DPP homolog 2
  3. JV18-1
  4. Mad-related protein 2
  5. SMAD family member 2
  6. hMAD-2
  7. SMAD 2
  8. Smad2
  9. hSMAD2
Gene Name SMAD2
Protein Type Unknown
Biological Properties
General Function Not Available
Specific Function Receptor-regulated SMAD (R-SMAD) that is an intracellular signal transducer and transcriptional modulator activated by TGF-beta (transforming growth factor) and activin type 1 receptor kinases. Binds the TRE element in the promoter region of many genes that are regulated by TGF-beta and, on formation of the SMAD2/SMAD4 complex, activates transcription. May act as a tumor suppressor in colorectal carcinoma. Positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator.
  • AGE-RAGE signaling pathway in diabetic complications
  • Apelin signaling pathway
  • Cell cycle
  • Cellular senescence
  • Chagas disease
  • Colorectal cancer
  • Diabetic cardiomyopathy
  • Endocytosis
  • Gastric cancer
  • Hepatocellular carcinoma
  • Hippo signaling pathway
  • Human T-cell leukemia virus 1 infection
  • Inflammatory bowel disease
  • Pancreatic cancer
  • Proteoglycans in cancer
  • Relaxin signaling pathway
  • Signaling pathways regulating pluripotency of stem cells
  • TGF-beta signaling pathway
  • Th17 cell differentiation
Reactions Not Available
GO Classification
Biological Process
activin receptor signaling pathway
embryonic foregut morphogenesis
wound healing
paraxial mesoderm morphogenesis
protein deubiquitination
primary miRNA processing
organ growth
somatic stem cell maintenance
signal transduction involved in regulation of gene expression
adrenal gland development
SMAD protein signal transduction
in utero embryonic development
BMP signaling pathway
anatomical structure morphogenesis
positive regulation of epithelial to mesenchymal transition
regulation of binding
zygotic specification of dorsal/ventral axis
positive regulation of nodal signaling pathway involved in determination of lateral mesoderm left/right asymmetry
negative regulation of transcription, DNA-dependent
positive regulation of transcription, DNA-dependent
negative regulation of transcription from RNA polymerase II promoter
positive regulation of transcription from RNA polymerase II promoter
mesoderm formation
cell differentiation
cell fate commitment
insulin secretion
response to cholesterol
response to glucose stimulus
embryonic cranial skeleton morphogenesis
positive regulation of BMP signaling pathway
pericardium development
anterior/posterior pattern specification
negative regulation of transforming growth factor beta receptor signaling pathway
regulation of transforming growth factor beta receptor signaling pathway
secondary palate development
endoderm formation
SMAD protein complex assembly
lung development
transforming growth factor beta receptor signaling pathway
nodal signaling pathway
negative regulation of cell proliferation
pancreas development
positive regulation of gene expression
common-partner SMAD protein phosphorylation
post-embryonic development
ureteric bud development
intracellular signal transduction
Cellular Component
protein-containing complex
activin responsive factor complex
heteromeric SMAD protein complex
SMAD protein complex
transcription factor complex
Molecular Function
metal ion binding
sequence-specific DNA binding transcription factor activity
co-SMAD binding
phosphatase binding
R-SMAD binding
DNA-binding transcription activator activity, RNA polymerase II-specific
tau protein binding
ubiquitin protein ligase binding
transcription factor binding
disordered domain specific binding
double-stranded DNA binding
chromatin binding
activating transcription factor binding
I-SMAD binding
DNA-binding transcription factor activity, RNA polymerase II-specific
RNA polymerase II core promoter proximal region sequence-specific DNA binding
core promoter proximal region sequence-specific DNA binding
SMAD binding
type I transforming growth factor beta receptor binding
transforming growth factor beta receptor binding
Cellular Location Not Available
Gene Properties
Chromosome Location Not Available
Locus Not Available
SNPs Not Available
Gene Sequence Not Available
Protein Properties
Number of Residues 467
Molecular Weight 52305.76
Theoretical pI 6.577
Pfam Domain Function
Signals Not Available
Transmembrane Regions Not Available
Protein Sequence Not Available
GenBank ID Protein Not Available
UniProtKB/Swiss-Prot ID Q15796
UniProtKB/Swiss-Prot Entry Name SMAD2_HUMAN
GenBank Gene ID Not Available
GeneCard ID Not Available
GenAtlas ID Not Available
HGNC ID Not Available
General References
  1. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [PubMed:15489334 ]
  2. Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP: A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10762-7. doi: 10.1073/pnas.0805139105. Epub 2008 Jul 31. [PubMed:18669648 ]
  3. Daub H, Olsen JV, Bairlein M, Gnad F, Oppermann FS, Korner R, Greff Z, Keri G, Stemmann O, Mann M: Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell. 2008 Aug 8;31(3):438-48. doi: 10.1016/j.molcel.2008.07.007. [PubMed:18691976 ]
  4. Gauci S, Helbig AO, Slijper M, Krijgsveld J, Heck AJ, Mohammed S: Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem. 2009 Jun 1;81(11):4493-501. doi: 10.1021/ac9004309. [PubMed:19413330 ]
  5. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE: The consensus coding sequences of human breast and colorectal cancers. Science. 2006 Oct 13;314(5797):268-74. Epub 2006 Sep 7. [PubMed:16959974 ]
  6. Sun Y, Ding L, Zhang H, Han J, Yang X, Yan J, Zhu Y, Li J, Song H, Ye Q: Potentiation of Smad-mediated transcriptional activation by the RNA-binding protein RBPMS. Nucleic Acids Res. 2006;34(21):6314-26. Epub 2006 Nov 11. [PubMed:17099224 ]
  7. Riggins GJ, Thiagalingam S, Rozenblum E, Weinstein CL, Kern SE, Hamilton SR, Willson JK, Markowitz SD, Kinzler KW, Vogelstein B: Mad-related genes in the human. Nat Genet. 1996 Jul;13(3):347-9. [PubMed:8673135 ]
  8. Zhang Y, Feng X, We R, Derynck R: Receptor-associated Mad homologues synergize as effectors of the TGF-beta response. Nature. 1996 Sep 12;383(6596):168-72. [PubMed:8774881 ]
  9. Eppert K, Scherer SW, Ozcelik H, Pirone R, Hoodless P, Kim H, Tsui LC, Bapat B, Gallinger S, Andrulis IL, Thomsen GH, Wrana JL, Attisano L: MADR2 maps to 18q21 and encodes a TGFbeta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell. 1996 Aug 23;86(4):543-52. [PubMed:8752209 ]
  10. Liu F, Pouponnot C, Massague J: Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes. Genes Dev. 1997 Dec 1;11(23):3157-67. [PubMed:9389648 ]
  11. Takenoshita S, Mogi A, Nagashima M, Yang K, Yagi K, Hanyu A, Nagamachi Y, Miyazono K, Hagiwara K: Characterization of the MADH2/Smad2 gene, a human Mad homolog responsible for the transforming growth factor-beta and activin signal transduction pathway. Genomics. 1998 Feb 15;48(1):1-11. [PubMed:9503010 ]
  12. Yagi K, Goto D, Hamamoto T, Takenoshita S, Kato M, Miyazono K: Alternatively spliced variant of Smad2 lacking exon 3. Comparison with wild-type Smad2 and Smad3. J Biol Chem. 1999 Jan 8;274(2):703-9. [PubMed:9873005 ]
  13. Kretzschmar M, Liu F, Hata A, Doody J, Massague J: The TGF-beta family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev. 1997 Apr 15;11(8):984-95. [PubMed:9136927 ]
  14. Abdollah S, Macias-Silva M, Tsukazaki T, Hayashi H, Attisano L, Wrana JL: TbetaRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling. J Biol Chem. 1997 Oct 31;272(44):27678-85. [PubMed:9346908 ]
  15. Zhou S, Zawel L, Lengauer C, Kinzler KW, Vogelstein B: Characterization of human FAST-1, a TGF beta and activin signal transducer. Mol Cell. 1998 Jul;2(1):121-7. [PubMed:9702198 ]
  16. Bonni S, Wang HR, Causing CG, Kavsak P, Stroschein SL, Luo K, Wrana JL: TGF-beta induces assembly of a Smad2-Smurf2 ubiquitin ligase complex that targets SnoN for degradation. Nat Cell Biol. 2001 Jun;3(6):587-95. [PubMed:11389444 ]
  17. Abdel-Wahab N, Wicks SJ, Mason RM, Chantry A: Decorin suppresses transforming growth factor-beta-induced expression of plasminogen activator inhibitor-1 in human mesangial cells through a mechanism that involves Ca2+-dependent phosphorylation of Smad2 at serine-240. Biochem J. 2002 Mar 15;362(Pt 3):643-9. [PubMed:11879191 ]
  18. Funaba M, Zimmerman CM, Mathews LS: Modulation of Smad2-mediated signaling by extracellular signal-regulated kinase. J Biol Chem. 2002 Nov 1;277(44):41361-8. Epub 2002 Aug 21. [PubMed:12193595 ]
  19. Lin F, Morrison JM, Wu W, Worman HJ: MAN1, an integral protein of the inner nuclear membrane, binds Smad2 and Smad3 and antagonizes transforming growth factor-beta signaling. Hum Mol Genet. 2005 Feb 1;14(3):437-45. Epub 2004 Dec 15. [PubMed:15601644 ]
  20. Pan D, Estevez-Salmeron LD, Stroschein SL, Zhu X, He J, Zhou S, Luo K: The integral inner nuclear membrane protein MAN1 physically interacts with the R-Smad proteins to repress signaling by the transforming growth factor-{beta} superfamily of cytokines. J Biol Chem. 2005 Apr 22;280(16):15992-6001. Epub 2005 Jan 12. [PubMed:15647271 ]
  21. Arndt S, Poser I, Schubert T, Moser M, Bosserhoff AK: Cloning and functional characterization of a new Ski homolog, Fussel-18, specifically expressed in neuronal tissues. Lab Invest. 2005 Nov;85(11):1330-41. [PubMed:16200078 ]
  22. He W, Dorn DC, Erdjument-Bromage H, Tempst P, Moore MA, Massague J: Hematopoiesis controlled by distinct TIF1gamma and Smad4 branches of the TGFbeta pathway. Cell. 2006 Jun 2;125(5):929-41. [PubMed:16751102 ]
  23. Simonsson M, Kanduri M, Gronroos E, Heldin CH, Ericsson J: The DNA binding activities of Smad2 and Smad3 are regulated by coactivator-mediated acetylation. J Biol Chem. 2006 Dec 29;281(52):39870-80. Epub 2006 Oct 30. [PubMed:17074756 ]
  24. Arndt S, Poser I, Moser M, Bosserhoff AK: Fussel-15, a novel Ski/Sno homolog protein, antagonizes BMP signaling. Mol Cell Neurosci. 2007 Apr;34(4):603-11. Epub 2007 Jan 11. [PubMed:17292623 ]
  25. Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani R, Rao BM, Dembowy J, Yaffe MB, Zandstra PW, Wrana JL: TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol. 2008 Jul;10(7):837-48. doi: 10.1038/ncb1748. Epub 2008 Jun 22. [PubMed:18568018 ]
  26. Takahata M, Inoue Y, Tsuda H, Imoto I, Koinuma D, Hayashi M, Ichikura T, Yamori T, Nagasaki K, Yoshida M, Matsuoka M, Morishita K, Yuki K, Hanyu A, Miyazawa K, Inazawa J, Miyazono K, Imamura T: SKI and MEL1 cooperate to inhibit transforming growth factor-beta signal in gastric cancer cells. J Biol Chem. 2009 Jan 30;284(5):3334-44. doi: 10.1074/jbc.M808989200. Epub 2008 Dec 1. [PubMed:19049980 ]
  27. Wu G, Chen YG, Ozdamar B, Gyuricza CA, Chong PA, Wrana JL, Massague J, Shi Y: Structural basis of Smad2 recognition by the Smad anchor for receptor activation. Science. 2000 Jan 7;287(5450):92-7. [PubMed:10615055 ]
  28. Massague J: TGF-beta signal transduction. Annu Rev Biochem. 1998;67:753-91. [PubMed:9759503 ]
  29. Verschueren K, Huylebroeck D: Remarkable versatility of Smad proteins in the nucleus of transforming growth factor-beta activated cells. Cytokine Growth Factor Rev. 1999 Sep-Dec;10(3-4):187-99. [PubMed:10647776 ]
  30. Wrana JL, Attisano L: The Smad pathway. Cytokine Growth Factor Rev. 2000 Mar-Jun;11(1-2):5-13. [PubMed:10708948 ]
  31. Miyazono K: TGF-beta signaling by Smad proteins. Cytokine Growth Factor Rev. 2000 Mar-Jun;11(1-2):15-22. [PubMed:10708949 ]
  32. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal. 2010 Jan 12;3(104):ra3. doi: 10.1126/scisignal.2000475. [PubMed:20068231 ]
  33. Van Damme P, Lasa M, Polevoda B, Gazquez C, Elosegui-Artola A, Kim DS, De Juan-Pardo E, Demeyer K, Hole K, Larrea E, Timmerman E, Prieto J, Arnesen T, Sherman F, Gevaert K, Aldabe R: N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB. Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12449-54. doi: 10.1073/pnas.1210303109. Epub 2012 Jul 18. [PubMed:22814378 ]
  34. Zhou H, Di Palma S, Preisinger C, Peng M, Polat AN, Heck AJ, Mohammed S: Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res. 2013 Jan 4;12(1):260-71. doi: 10.1021/pr300630k. Epub 2012 Dec 18. [PubMed:23186163 ]
  35. Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Burckstummer T, Bennett KL, Superti-Furga G, Colinge J: Initial characterization of the human central proteome. BMC Syst Biol. 2011 Jan 26;5:17. doi: 10.1186/1752-0509-5-17. [PubMed:21269460 ]
  36. Bienvenut WV, Sumpton D, Martinez A, Lilla S, Espagne C, Meinnel T, Giglione C: Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N-alpha-acetylation features. Mol Cell Proteomics. 2012 Jun;11(6):M111.015131. doi: 10.1074/mcp.M111.015131. Epub 2012 Jan 5. [PubMed:22223895 ]
  37. Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen BG, Rossant J, Wrana JL: The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-beta-SMAD pathway. Dev Cell. 2010 Dec 14;19(6):831-44. doi: 10.1016/j.devcel.2010.11.012. [PubMed:21145499 ]
  38. Kawabata M, Inoue H, Hanyu A, Imamura T, Miyazono K: Smad proteins exist as monomers in vivo and undergo homo- and hetero-oligomerization upon activation by serine/threonine kinase receptors. EMBO J. 1998 Jul 15;17(14):4056-65. doi: 10.1093/emboj/17.14.4056. [PubMed:9670020 ]
  39. Feng Y, Wu H, Xu Y, Zhang Z, Liu T, Lin X, Feng XH: Zinc finger protein 451 is a novel Smad corepressor in transforming growth factor-beta signaling. J Biol Chem. 2014 Jan 24;289(4):2072-83. doi: 10.1074/jbc.M113.526905. Epub 2013 Dec 9. [PubMed:24324267 ]
  40. Chacko BM, Qin BY, Tiwari A, Shi G, Lam S, Hayward LJ, De Caestecker M, Lin K: Structural basis of heteromeric smad protein assembly in TGF-beta signaling. Mol Cell. 2004 Sep 10;15(5):813-23. doi: 10.1016/j.molcel.2004.07.016. [PubMed:15350224 ]
  41. Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL: SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell. 1998 Dec 11;95(6):779-91. doi: 10.1016/s0092-8674(00)81701-8. [PubMed:9865696 ]
  42. Lebrun JJ, Takabe K, Chen Y, Vale W: Roles of pathway-specific and inhibitory Smads in activin receptor signaling. Mol Endocrinol. 1999 Jan;13(1):15-23. doi: 10.1210/mend.13.1.0218. [PubMed:9892009 ]
  43. Hocevar BA, Smine A, Xu XX, Howe PH: The adaptor molecule Disabled-2 links the transforming growth factor beta receptors to the Smad pathway. EMBO J. 2001 Jun 1;20(11):2789-801. doi: 10.1093/emboj/20.11.2789. [PubMed:11387212 ]
  44. Leong GM, Subramaniam N, Figueroa J, Flanagan JL, Hayman MJ, Eisman JA, Kouzmenko AP: Ski-interacting protein interacts with Smad proteins to augment transforming growth factor-beta-dependent transcription. J Biol Chem. 2001 May 25;276(21):18243-8. doi: 10.1074/jbc.M010815200. Epub 2001 Mar 6. [PubMed:11278756 ]
  45. Lin X, Duan X, Liang YY, Su Y, Wrighton KH, Long J, Hu M, Davis CM, Wang J, Brunicardi FC, Shi Y, Chen YG, Meng A, Feng XH: PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling. Cell. 2006 Jun 2;125(5):915-28. doi: 10.1016/j.cell.2006.03.044. [PubMed:16751101 ]
  46. Inoue Y, Itoh Y, Abe K, Okamoto T, Daitoku H, Fukamizu A, Onozaki K, Hayashi H: Smad3 is acetylated by p300/CBP to regulate its transactivation activity. Oncogene. 2007 Jan 25;26(4):500-8. doi: 10.1038/sj.onc.1209826. Epub 2006 Jul 24. [PubMed:16862174 ]
  47. Dai F, Lin X, Chang C, Feng XH: Nuclear export of Smad2 and Smad3 by RanBP3 facilitates termination of TGF-beta signaling. Dev Cell. 2009 Mar;16(3):345-57. doi: 10.1016/j.devcel.2009.01.022. [PubMed:19289081 ]
  48. Watanabe Y, Itoh S, Goto T, Ohnishi E, Inamitsu M, Itoh F, Satoh K, Wiercinska E, Yang W, Shi L, Tanaka A, Nakano N, Mommaas AM, Shibuya H, Ten Dijke P, Kato M: TMEPAI, a transmembrane TGF-beta-inducible protein, sequesters Smad proteins from active participation in TGF-beta signaling. Mol Cell. 2010 Jan 15;37(1):123-34. doi: 10.1016/j.molcel.2009.10.028. [PubMed:20129061 ]
  49. Inui M, Manfrin A, Mamidi A, Martello G, Morsut L, Soligo S, Enzo E, Moro S, Polo S, Dupont S, Cordenonsi M, Piccolo S: USP15 is a deubiquitylating enzyme for receptor-activated SMADs. Nat Cell Biol. 2011 Sep 25;13(11):1368-75. doi: 10.1038/ncb2346. [PubMed:21947082 ]
  50. Nakano N, Maeyama K, Sakata N, Itoh F, Akatsu R, Nakata M, Katsu Y, Ikeno S, Togawa Y, Vo Nguyen TT, Watanabe Y, Kato M, Itoh S: C18 ORF1, a novel negative regulator of transforming growth factor-beta signaling. J Biol Chem. 2014 May 2;289(18):12680-92. doi: 10.1074/jbc.M114.558981. Epub 2014 Mar 13. [PubMed:24627487 ]
  51. Sakata N, Kaneko S, Ikeno S, Miura Y, Nakabayashi H, Dong XY, Dong JT, Tamaoki T, Nakano N, Itoh S: TGF- beta Signaling Cooperates with AT Motif-Binding Factor-1 for Repression of the alpha -Fetoprotein Promoter. J Signal Transduct. 2014;2014:970346. doi: 10.1155/2014/970346. Epub 2014 Jul 3. [PubMed:25105025 ]
  52. Seong HA, Jung H, Kim KT, Ha H: 3-Phosphoinositide-dependent PDK1 negatively regulates transforming growth factor-beta-induced signaling in a kinase-dependent manner through physical interaction with Smad proteins. J Biol Chem. 2007 Apr 20;282(16):12272-89. doi: 10.1074/jbc.M609279200. Epub 2007 Feb 27. [PubMed:17327236 ]
  53. Bruce DL, Macartney T, Yong W, Shou W, Sapkota GP: Protein phosphatase 5 modulates SMAD3 function in the transforming growth factor-beta pathway. Cell Signal. 2012 Nov;24(11):1999-2006. doi: 10.1016/j.cellsig.2012.07.003. Epub 2012 Jul 7. [PubMed:22781750 ]
  54. Macias-Silva M, Abdollah S, Hoodless PA, Pirone R, Attisano L, Wrana JL: MADR2 is a substrate of the TGFbeta receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell. 1996 Dec 27;87(7):1215-24. doi: 10.1016/s0092-8674(00)81817-6. [PubMed:8980228 ]
  55. Gripp KW, Wotton D, Edwards MC, Roessler E, Ades L, Meinecke P, Richieri-Costa A, Zackai EH, Massague J, Muenke M, Elledge SJ: Mutations in TGIF cause holoprosencephaly and link NODAL signalling to human neural axis determination. Nat Genet. 2000 Jun;25(2):205-8. doi: 10.1038/76074. [PubMed:10835638 ]
  56. Luo Y, Hu W, Xu R, Hou B, Zhang L, Zhang W: ZNF580, a novel C2H2 zinc-finger transcription factor, interacts with the TGF-beta signal molecule Smad2. Cell Biol Int. 2011 Nov;35(11):1153-7. doi: 10.1042/CBI20110050. [PubMed:21599657 ]
  57. Abbas T, Mueller AC, Shibata E, Keaton M, Rossi M, Dutta A: CRL1-FBXO11 promotes Cdt2 ubiquitylation and degradation and regulates Pr-Set7/Set8-mediated cellular migration. Mol Cell. 2013 Mar 28;49(6):1147-58. doi: 10.1016/j.molcel.2013.02.003. Epub 2013 Mar 7. [PubMed:23478445 ]