Hmdb loader
HMDB Protein ID HMDBP14535
Secondary Accession Numbers None
Name Heat shock 70 kDa protein 1A
  1. Heat shock 70 kDa protein 1
  2. HSP70-1
  3. HSP70.1
Gene Name HSPA1A
Protein Type Unknown
Biological Properties
General Function Not Available
Specific Function Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones. The co-chaperones have been shown to not only regulate different steps of the ATPase cycle, but they also have an individual specificity such that one co-chaperone may promote folding of a substrate while another may promote degradation. The affinity for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. It goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release. The co-chaperones are of three types: J-domain co-chaperones such as HSP40s (stimulate ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-bound to the ATP-bound state thereby promoting substrate release), and the TPR domain chaperones such as HOPX and STUB1 (PubMed:24012426, PubMed:26865365, PubMed:24318877). Maintains protein homeostasis during cellular stress through two opposing mechanisms: protein refolding and degradation. Its acetylation/deacetylation state determines whether it functions in protein refolding or protein degradation by controlling the competitive binding of co-chaperones HOPX and STUB1. During the early stress response, the acetylated form binds to HOPX which assists in chaperone-mediated protein refolding, thereafter, it is deacetylated and binds to ubiquitin ligase STUB1 that promotes ubiquitin-mediated protein degradation (PubMed:27708256). Regulates centrosome integrity during mitosis, and is required for the maintenance of a functional mitotic centrosome that supports the assembly of a bipolar mitotic spindle (PubMed:27137183). Enhances STUB1-mediated SMAD3 ubiquitination and degradation and facilitates STUB1-mediated inhibition of TGF-beta signaling (PubMed:24613385). Essential for STUB1-mediated ubiquitination and degradation of FOXP3 in regulatory T-cells (Treg) during inflammation (PubMed:23973223). Negatively regulates heat shock-induced HSF1 transcriptional activity during the attenuation and recovery phase period of the heat shock response (PubMed:9499401). Involved in the clearance of misfolded PRDM1/Blimp-1 proteins. Sequesters them in the cytoplasm and promotes their association with SYNV1/HRD1, leading to proteasomal degradation (PubMed:28842558).(Microbial infection) In case of rotavirus A infection, serves as a post-attachment receptor for the virus to facilitate entry into the cell.
  • Antigen processing and presentation
  • Endocytosis
  • Estrogen signaling pathway
  • Legionellosis
  • Lipid and atherosclerosis
  • Longevity regulating pathway - multiple species
  • MAPK signaling pathway
  • Measles
  • Prion disease
  • Protein processing in endoplasmic reticulum
  • Spliceosome
  • Toxoplasmosis
Reactions Not Available
GO Classification
Biological Process
cellular response to unfolded protein
chaperone cofactor-dependent protein refolding
protein refolding
positive regulation of nucleotide-binding oligomerization domain containing 2 signaling pathway
neutrophil degranulation
positive regulation of interleukin-8 production
regulation of mRNA stability
negative regulation of protein ubiquitination
positive regulation of proteasomal ubiquitin-dependent protein catabolic process
negative regulation of apoptotic process
cellular heat acclimation
negative regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathway
negative regulation of inclusion body assembly
negative regulation of mitochondrial outer membrane permeabilization involved in apoptotic signaling pathway
negative regulation of transcription from RNA polymerase II promoter in response to stress
positive regulation of endoribonuclease activity
positive regulation of microtubule nucleation
positive regulation of RNA splicing
regulation of mitotic spindle assembly
protein stabilization
ATP metabolic process
chaperone-mediated protein complex assembly
regulation of protein ubiquitination
positive regulation of tumor necrosis factor-mediated signaling pathway
response to unfolded protein
negative regulation of cell growth
vesicle-mediated transport
negative regulation of transforming growth factor beta receptor signaling pathway
negative regulation of extrinsic apoptotic signaling pathway in absence of ligand
positive regulation of erythrocyte differentiation
negative regulation of cell proliferation
positive regulation of gene expression
negative regulation of cell death
positive regulation of NF-kappaB transcription factor activity
mRNA catabolic process
cellular response to heat
cellular response to oxidative stress
regulation of cellular response to heat
lysosomal transport
Cellular Component
protein-containing complex
focal adhesion
endoplasmic reticulum
extracellular vesicular exosome
plasma membrane
blood microparticle
perinuclear region of cytoplasm
nuclear speck
ribonucleoprotein complex
extracellular region
inclusion body
ficolin-1-rich granule lumen
Molecular Function
protein folding chaperone
protein N-terminus binding
viral receptor activity
unfolded protein binding
denatured protein binding
histone deacetylase binding
ATP binding
C3HC4-type RING finger domain binding
G protein-coupled receptor binding
ubiquitin protein ligase binding
receptor binding
disordered domain specific binding
heat shock protein binding
RNA binding
cadherin binding
ATPase activity
enzyme binding
transcription corepressor activity
misfolded protein binding
Cellular Location Not Available
Gene Properties
Chromosome Location Not Available
Locus Not Available
SNPs Not Available
Gene Sequence Not Available
Protein Properties
Number of Residues 641
Molecular Weight 70051.65
Theoretical pI 5.652
Pfam Domain Function
Signals Not Available
Transmembrane Regions Not Available
Protein Sequence Not Available
GenBank ID Protein Not Available
UniProtKB/Swiss-Prot ID P0DMV8
UniProtKB/Swiss-Prot Entry Name HS71A_HUMAN
GenBank Gene ID Not Available
GeneCard ID Not Available
GenAtlas ID Not Available
HGNC ID Not Available
General References
  1. Mungall AJ, Palmer SA, Sims SK, Edwards CA, Ashurst JL, Wilming L, Jones MC, Horton R, Hunt SE, Scott CE, Gilbert JG, Clamp ME, Bethel G, Milne S, Ainscough R, Almeida JP, Ambrose KD, Andrews TD, Ashwell RI, Babbage AK, Bagguley CL, Bailey J, Banerjee R, Barker DJ, Barlow KF, Bates K, Beare DM, Beasley H, Beasley O, Bird CP, Blakey S, Bray-Allen S, Brook J, Brown AJ, Brown JY, Burford DC, Burrill W, Burton J, Carder C, Carter NP, Chapman JC, Clark SY, Clark G, Clee CM, Clegg S, Cobley V, Collier RE, Collins JE, Colman LK, Corby NR, Coville GJ, Culley KM, Dhami P, Davies J, Dunn M, Earthrowl ME, Ellington AE, Evans KA, Faulkner L, Francis MD, Frankish A, Frankland J, French L, Garner P, Garnett J, Ghori MJ, Gilby LM, Gillson CJ, Glithero RJ, Grafham DV, Grant M, Gribble S, Griffiths C, Griffiths M, Hall R, Halls KS, Hammond S, Harley JL, Hart EA, Heath PD, Heathcott R, Holmes SJ, Howden PJ, Howe KL, Howell GR, Huckle E, Humphray SJ, Humphries MD, Hunt AR, Johnson CM, Joy AA, Kay M, Keenan SJ, Kimberley AM, King A, Laird GK, Langford C, Lawlor S, Leongamornlert DA, Leversha M, Lloyd CR, Lloyd DM, Loveland JE, Lovell J, Martin S, Mashreghi-Mohammadi M, Maslen GL, Matthews L, McCann OT, McLaren SJ, McLay K, McMurray A, Moore MJ, Mullikin JC, Niblett D, Nickerson T, Novik KL, Oliver K, Overton-Larty EK, Parker A, Patel R, Pearce AV, Peck AI, Phillimore B, Phillips S, Plumb RW, Porter KM, Ramsey Y, Ranby SA, Rice CM, Ross MT, Searle SM, Sehra HK, Sheridan E, Skuce CD, Smith S, Smith M, Spraggon L, Squares SL, Steward CA, Sycamore N, Tamlyn-Hall G, Tester J, Theaker AJ, Thomas DW, Thorpe A, Tracey A, Tromans A, Tubby B, Wall M, Wallis JM, West AP, White SS, Whitehead SL, Whittaker H, Wild A, Willey DJ, Wilmer TE, Wood JM, Wray PW, Wyatt JC, Young L, Younger RM, Bentley DR, Coulson A, Durbin R, Hubbard T, Sulston JE, Dunham I, Rogers J, Beck S: The DNA sequence and analysis of human chromosome 6. Nature. 2003 Oct 23;425(6960):805-11. [PubMed:14574404 ]
  2. Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. Epub 2003 Dec 21. [PubMed:14702039 ]
  3. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [PubMed:15489334 ]
  4. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M: Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009 Aug 14;325(5942):834-40. doi: 10.1126/science.1175371. Epub 2009 Jul 16. [PubMed:19608861 ]
  5. Daub H, Olsen JV, Bairlein M, Gnad F, Oppermann FS, Korner R, Greff Z, Keri G, Stemmann O, Mann M: Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell. 2008 Aug 8;31(3):438-48. doi: 10.1016/j.molcel.2008.07.007. [PubMed:18691976 ]
  6. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M: Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006 Nov 3;127(3):635-48. [PubMed:17081983 ]
  7. Gauci S, Helbig AO, Slijper M, Krijgsveld J, Heck AJ, Mohammed S: Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem. 2009 Jun 1;81(11):4493-501. doi: 10.1021/ac9004309. [PubMed:19413330 ]
  8. Xie T, Rowen L, Aguado B, Ahearn ME, Madan A, Qin S, Campbell RD, Hood L: Analysis of the gene-dense major histocompatibility complex class III region and its comparison to mouse. Genome Res. 2003 Dec;13(12):2621-36. [PubMed:14656967 ]
  9. Milner CM, Campbell RD: Structure and expression of the three MHC-linked HSP70 genes. Immunogenetics. 1990;32(4):242-51. [PubMed:1700760 ]
  10. Hunt C, Morimoto RI: Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp70. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6455-9. [PubMed:3931075 ]
  11. Sargent CA, Dunham I, Trowsdale J, Campbell RD: Human major histocompatibility complex contains genes for the major heat shock protein HSP70. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1968-72. [PubMed:2538825 ]
  12. Drabent B, Genthe A, Benecke BJ: In vitro transcription of a human hsp 70 heat shock gene by extracts prepared from heat-shocked and non-heat-shocked human cells. Nucleic Acids Res. 1986 Nov 25;14(22):8933-48. [PubMed:3786141 ]
  13. Forsythe HL, Jarvis JL, Turner JW, Elmore LW, Holt SE: Stable association of hsp90 and p23, but Not hsp70, with active human telomerase. J Biol Chem. 2001 May 11;276(19):15571-4. Epub 2001 Mar 23. [PubMed:11274138 ]
  14. Brychzy A, Rein T, Winklhofer KF, Hartl FU, Young JC, Obermann WM: Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system. EMBO J. 2003 Jul 15;22(14):3613-23. [PubMed:12853476 ]
  15. Nellist M, Burgers PC, van den Ouweland AM, Halley DJ, Luider TM: Phosphorylation and binding partner analysis of the TSC1-TSC2 complex. Biochem Biophys Res Commun. 2005 Aug 5;333(3):818-26. [PubMed:15963462 ]
  16. Haag Breese E, Uversky VN, Georgiadis MM, Harrington MA: The disordered amino-terminus of SIMPL interacts with members of the 70-kDa heat-shock protein family. DNA Cell Biol. 2006 Dec;25(12):704-14. [PubMed:17233114 ]
  17. Perez-Vargas J, Romero P, Lopez S, Arias CF: The peptide-binding and ATPase domains of recombinant hsc70 are required to interact with rotavirus and reduce its infectivity. J Virol. 2006 Apr;80(7):3322-31. [PubMed:16537599 ]
  18. Jonson L, Vikesaa J, Krogh A, Nielsen LK, Hansen Tv, Borup R, Johnsen AH, Christiansen J, Nielsen FC: Molecular composition of IMP1 ribonucleoprotein granules. Mol Cell Proteomics. 2007 May;6(5):798-811. Epub 2007 Feb 7. [PubMed:17289661 ]
  19. Moffatt NS, Bruinsma E, Uhl C, Obermann WM, Toft D: Role of the cochaperone Tpr2 in Hsp90 chaperoning. Biochemistry. 2008 Aug 5;47(31):8203-13. doi: 10.1021/bi800770g. Epub 2008 Jul 12. [PubMed:18620420 ]
  20. Osipiuk J, Walsh MA, Freeman BC, Morimoto RI, Joachimiak A: Structure of a new crystal form of human Hsp70 ATPase domain. Acta Crystallogr D Biol Crystallogr. 1999 May;55(Pt 5):1105-7. [PubMed:10216320 ]
  21. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal. 2010 Jan 12;3(104):ra3. doi: 10.1126/scisignal.2000475. [PubMed:20068231 ]
  22. Zhou H, Di Palma S, Preisinger C, Peng M, Polat AN, Heck AJ, Mohammed S: Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res. 2013 Jan 4;12(1):260-71. doi: 10.1021/pr300630k. Epub 2012 Dec 18. [PubMed:23186163 ]
  23. Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Burckstummer T, Bennett KL, Superti-Furga G, Colinge J: Initial characterization of the human central proteome. BMC Syst Biol. 2011 Jan 26;5:17. doi: 10.1186/1752-0509-5-17. [PubMed:21269460 ]
  24. Bian Y, Song C, Cheng K, Dong M, Wang F, Huang J, Sun D, Wang L, Ye M, Zou H: An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics. 2014 Jan 16;96:253-62. doi: 10.1016/j.jprot.2013.11.014. Epub 2013 Nov 22. [PubMed:24275569 ]
  25. Vaca Jacome AS, Rabilloud T, Schaeffer-Reiss C, Rompais M, Ayoub D, Lane L, Bairoch A, Van Dorsselaer A, Carapito C: N-terminome analysis of the human mitochondrial proteome. Proteomics. 2015 Jul;15(14):2519-24. doi: 10.1002/pmic.201400617. Epub 2015 Jun 8. [PubMed:25944712 ]
  26. Rauch JN, Gestwicki JE: Binding of human nucleotide exchange factors to heat shock protein 70 (Hsp70) generates functionally distinct complexes in vitro. J Biol Chem. 2014 Jan 17;289(3):1402-14. doi: 10.1074/jbc.M113.521997. Epub 2013 Dec 5. [PubMed:24318877 ]
  27. Roder K, Werdich AA, Li W, Liu M, Kim TY, Organ-Darling LE, Moshal KS, Hwang JM, Lu Y, Choi BR, MacRae CA, Koren G: RING finger protein RNF207, a novel regulator of cardiac excitation. J Biol Chem. 2014 Dec 5;289(49):33730-40. doi: 10.1074/jbc.M114.592295. Epub 2014 Oct 3. [PubMed:25281747 ]
  28. Guo A, Gu H, Zhou J, Mulhern D, Wang Y, Lee KA, Yang V, Aguiar M, Kornhauser J, Jia X, Ren J, Beausoleil SA, Silva JC, Vemulapalli V, Bedford MT, Comb MJ: Immunoaffinity enrichment and mass spectrometry analysis of protein methylation. Mol Cell Proteomics. 2014 Jan;13(1):372-87. doi: 10.1074/mcp.O113.027870. Epub 2013 Oct 15. [PubMed:24129315 ]
  29. Rosenow A, Noben JP, Jocken J, Kallendrusch S, Fischer-Posovszky P, Mariman EC, Renes J: Resveratrol-induced changes of the human adipocyte secretion profile. J Proteome Res. 2012 Sep 7;11(9):4733-43. doi: 10.1021/pr300539b. Epub 2012 Aug 27. [PubMed:22905912 ]
  30. Shi Y, Mosser DD, Morimoto RI: Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev. 1998 Mar 1;12(5):654-66. doi: 10.1101/gad.12.5.654. [PubMed:9499401 ]
  31. Han C, Chen T, Li N, Yang M, Wan T, Cao X: HDJC9, a novel human type C DnaJ/HSP40 member interacts with and cochaperones HSP70 through the J domain. Biochem Biophys Res Commun. 2007 Feb 9;353(2):280-5. doi: 10.1016/j.bbrc.2006.12.013. Epub 2006 Dec 12. [PubMed:17182002 ]
  32. Arthur JC, Lich JD, Aziz RK, Kotb M, Ting JP: Heat shock protein 90 associates with monarch-1 and regulates its ability to promote degradation of NF-kappaB-inducing kinase. J Immunol. 2007 Nov 1;179(9):6291-6. doi: 10.4049/jimmunol.179.9.6291. [PubMed:17947705 ]
  33. Hwang CY, Holl J, Rajan D, Lee Y, Kim S, Um M, Kwon KS, Song B: Hsp70 interacts with the retroviral restriction factor TRIM5alpha and assists the folding of TRIM5alpha. J Biol Chem. 2010 Mar 5;285(10):7827-37. doi: 10.1074/jbc.M109.040618. Epub 2010 Jan 6. [PubMed:20053985 ]
  34. Chen Z, Barbi J, Bu S, Yang HY, Li Z, Gao Y, Jinasena D, Fu J, Lin F, Chen C, Zhang J, Yu N, Li X, Shan Z, Nie J, Gao Z, Tian H, Li Y, Yao Z, Zheng Y, Park BV, Pan Z, Zhang J, Dang E, Li Z, Wang H, Luo W, Li L, Semenza GL, Zheng SG, Loser K, Tsun A, Greene MI, Pardoll DM, Pan F, Li B: The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity. 2013 Aug 22;39(2):272-85. doi: 10.1016/j.immuni.2013.08.006. [PubMed:23973223 ]
  35. Jakobsson ME, Moen A, Bousset L, Egge-Jacobsen W, Kernstock S, Melki R, Falnes PO: Identification and characterization of a novel human methyltransferase modulating Hsp70 protein function through lysine methylation. J Biol Chem. 2013 Sep 27;288(39):27752-63. doi: 10.1074/jbc.M113.483248. Epub 2013 Aug 6. [PubMed:23921388 ]
  36. Hasson SA, Kane LA, Yamano K, Huang CH, Sliter DA, Buehler E, Wang C, Heman-Ackah SM, Hessa T, Guha R, Martin SE, Youle RJ: High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature. 2013 Dec 12;504(7479):291-5. doi: 10.1038/nature12748. Epub 2013 Nov 24. [PubMed:24270810 ]
  37. Radons J: The human HSP70 family of chaperones: where do we stand? Cell Stress Chaperones. 2016 May;21(3):379-404. doi: 10.1007/s12192-016-0676-6. Epub 2016 Feb 10. [PubMed:26865365 ]
  38. Seo JH, Park JH, Lee EJ, Vo TT, Choi H, Kim JY, Jang JK, Wee HJ, Lee HS, Jang SH, Park ZY, Jeong J, Lee KJ, Seok SH, Park JY, Lee BJ, Lee MN, Oh GT, Kim KW: ARD1-mediated Hsp70 acetylation balances stress-induced protein refolding and degradation. Nat Commun. 2016 Oct 6;7:12882. doi: 10.1038/ncomms12882. [PubMed:27708256 ]
  39. Shang Y, Xu X, Duan X, Guo J, Wang Y, Ren F, He D, Chang Z: Hsp70 and Hsp90 oppositely regulate TGF-beta signaling through CHIP/Stub1. Biochem Biophys Res Commun. 2014 Mar 28;446(1):387-92. doi: 10.1016/j.bbrc.2014.02.124. Epub 2014 Mar 5. [PubMed:24613385 ]
  40. Wang WF, Yan L, Liu Z, Liu LX, Lin J, Liu ZY, Chen XP, Zhang W, Xu ZZ, Shi T, Li JM, Zhao YL, Meng G, Xia Y, Li JY, Zhu J: HSP70-Hrd1 axis precludes the oncorepressor potential of N-terminal misfolded Blimp-1s in lymphoma cells. Nat Commun. 2017 Aug 25;8(1):363. doi: 10.1038/s41467-017-00476-w. [PubMed:28842558 ]
  41. Cloutier P, Lavallee-Adam M, Faubert D, Blanchette M, Coulombe B: A newly uncovered group of distantly related lysine methyltransferases preferentially interact with molecular chaperones to regulate their activity. PLoS Genet. 2013;9(1):e1003210. doi: 10.1371/journal.pgen.1003210. Epub 2013 Jan 17. [PubMed:23349634 ]
  42. Rabindran SK, Wisniewski J, Li L, Li GC, Wu C: Interaction between heat shock factor and hsp70 is insufficient to suppress induction of DNA-binding activity in vivo. Mol Cell Biol. 1994 Oct;14(10):6552-60. doi: 10.1128/mcb.14.10.6552-6560.1994. [PubMed:7935376 ]
  43. Zeke T, Morrice N, Vazquez-Martin C, Cohen PT: Human protein phosphatase 5 dissociates from heat-shock proteins and is proteolytically activated in response to arachidonic acid and the microtubule-depolymerizing drug nocodazole. Biochem J. 2005 Jan 1;385(Pt 1):45-56. doi: 10.1042/BJ20040690. [PubMed:15383005 ]
  44. Darshi M, Mendiola VL, Mackey MR, Murphy AN, Koller A, Perkins GA, Ellisman MH, Taylor SS: ChChd3, an inner mitochondrial membrane protein, is essential for maintaining crista integrity and mitochondrial function. J Biol Chem. 2011 Jan 28;286(4):2918-32. doi: 10.1074/jbc.M110.171975. Epub 2010 Nov 16. [PubMed:21081504 ]
  45. Liu X, Liu D, Qian D, Dai J, An Y, Jiang S, Stanley B, Yang J, Wang B, Liu X, Liu DX: Nucleophosmin (NPM1/B23) interacts with activating transcription factor 5 (ATF5) protein and promotes proteasome- and caspase-dependent ATF5 degradation in hepatocellular carcinoma cells. J Biol Chem. 2012 Jun 1;287(23):19599-609. doi: 10.1074/jbc.M112.363622. Epub 2012 Apr 23. [PubMed:22528486 ]
  46. Mayer MP: Hsp70 chaperone dynamics and molecular mechanism. Trends Biochem Sci. 2013 Oct;38(10):507-14. doi: 10.1016/j.tibs.2013.08.001. Epub 2013 Sep 5. [PubMed:24012426 ]
  47. Mohanan V, Grimes CL: The molecular chaperone HSP70 binds to and stabilizes NOD2, an important protein involved in Crohn disease. J Biol Chem. 2014 Jul 4;289(27):18987-98. doi: 10.1074/jbc.M114.557686. Epub 2014 Apr 30. [PubMed:24790089 ]
  48. Ito N, Kamiguchi K, Nakanishi K, Sokolovskya A, Hirohashi Y, Tamura Y, Murai A, Yamamoto E, Kanaseki T, Tsukahara T, Kochin V, Chiba S, Shimohama S, Sato N, Torigoe T: A novel nuclear DnaJ protein, DNAJC8, can suppress the formation of spinocerebellar ataxia 3 polyglutamine aggregation in a J-domain independent manner. Biochem Biophys Res Commun. 2016 Jun 10;474(4):626-633. doi: 10.1016/j.bbrc.2016.03.152. Epub 2016 Apr 28. [PubMed:27133716 ]
  49. Fang CT, Kuo HH, Pan TS, Yu FC, Yih LH: HSP70 regulates the function of mitotic centrosomes. Cell Mol Life Sci. 2016 Oct;73(20):3949-60. doi: 10.1007/s00018-016-2236-8. Epub 2016 Apr 30. [PubMed:27137183 ]
  50. Shida M, Arakawa A, Ishii R, Kishishita S, Takagi T, Kukimoto-Niino M, Sugano S, Tanaka A, Shirouzu M, Yokoyama S: Direct inter-subdomain interactions switch between the closed and open forms of the Hsp70 nucleotide-binding domain in the nucleotide-free state. Acta Crystallogr D Biol Crystallogr. 2010 Mar;66(Pt 3):223-32. doi: 10.1107/S0907444909053979. Epub 2010 Feb 12. [PubMed:20179333 ]
  51. Wisniewska M, Karlberg T, Lehtio L, Johansson I, Kotenyova T, Moche M, Schuler H: Crystal structures of the ATPase domains of four human Hsp70 isoforms: HSPA1L/Hsp70-hom, HSPA2/Hsp70-2, HSPA6/Hsp70B', and HSPA5/BiP/GRP78. PLoS One. 2010 Jan 11;5(1):e8625. doi: 10.1371/journal.pone.0008625. [PubMed:20072699 ]
  52. Arakawa A, Handa N, Ohsawa N, Shida M, Kigawa T, Hayashi F, Shirouzu M, Yokoyama S: The C-terminal BAG domain of BAG5 induces conformational changes of the Hsp70 nucleotide-binding domain for ADP-ATP exchange. Structure. 2010 Mar 10;18(3):309-19. doi: 10.1016/j.str.2010.01.004. [PubMed:20223214 ]
  53. Arakawa A, Handa N, Shirouzu M, Yokoyama S: Biochemical and structural studies on the high affinity of Hsp70 for ADP. Protein Sci. 2011 Aug;20(8):1367-79. doi: 10.1002/pro.663. Epub 2011 Jun 8. [PubMed:21608060 ]