Hmdb loader
Survey
Identification
HMDB Protein ID HMDBP14552
Secondary Accession Numbers None
Name Heat shock protein HSP 90-beta
Synonyms
  1. Heat shock 84 kDa
  2. Tumor-specific transplantation 84 kDa antigen
  3. HSP 84
  4. HSP84
  5. TSTA
Gene Name HSP90AB1
Protein Type Unknown
Biological Properties
General Function Not Available
Specific Function Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function. Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself. Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle. Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels. They first alter the steady-state levels of certain transcription factors in response to various physiological cues. Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment. Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression. Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation. Promotes cell differentiation by chaperoning BIRC2 and thereby protecting from auto-ubiquitination and degradation by the proteasomal machinery. Main chaperone involved in the phosphorylation/activation of the STAT1 by chaperoning both JAK2 and PRKCE under heat shock and in turn, activates its own transcription. Involved in the translocation into ERGIC (endoplasmic reticulum-Golgi intermediate compartment) of leaderless cargos (lacking the secretion signal sequence) such as the interleukin 1/IL-1; the translocation process is mediated by the cargo receptor TMED10.
Pathways
  • Antigen processing and presentation
  • Chemical carcinogenesis - receptor activation
  • Estrogen signaling pathway
  • Fluid shear stress and atherosclerosis
  • IL-17 signaling pathway
  • Lipid and atherosclerosis
  • Necroptosis
  • NOD-like receptor signaling pathway
  • PI3K-Akt signaling pathway
  • Progesterone-mediated oocyte maturation
  • Prostate cancer
  • Protein processing in endoplasmic reticulum
  • Salmonella infection
  • Th17 cell differentiation
Reactions Not Available
GO Classification
Biological Process
response to cocaine
negative regulation of neuron apoptotic process
negative regulation of apoptotic process
protein folding
positive regulation of protein import into nucleus
central nervous system neuron axonogenesis
virion attachment to host cell
negative regulation of complement-dependent cytotoxicity
response to salt stress
negative regulation of protein metabolic process
negative regulation of transforming growth factor beta activation
positive regulation of cyclin-dependent protein kinase activity
protein stabilization
positive regulation of phosphoprotein phosphatase activity
chaperone-mediated protein complex assembly
establishment of cell polarity
response to drug
positive regulation of telomerase activity
positive regulation of cell size
regulation of cellular protein localization
regulation of protein ubiquitination
telomerase holoenzyme complex assembly
positive regulation of protein binding
regulation of interferon-gamma-mediated signaling pathway
regulation of type I interferon-mediated signaling pathway
response to organic substance
positive regulation of nitric oxide biosynthetic process
cellular response to organic cyclic compound
negative regulation of proteasomal ubiquitin-dependent protein catabolic process
positive regulation of protein serine/threonine kinase activity
positive regulation of protein kinase B signaling cascade
supramolecular fiber organization
positive regulation of transforming growth factor beta receptor signaling pathway
positive regulation of cell differentiation
negative regulation of proteasomal protein catabolic process
cellular response to interleukin-4
placenta development
telomere maintenance via telomerase
negative regulation of cell cycle arrest
axon extension
positive regulation of peptidyl-serine phosphorylation
cellular response to heat
positive regulation of protein localization to cell surface
Cellular Component
cytosol
cell surface
protein-containing complex
cytoplasm
mitochondrion
plasma membrane
perinuclear region of cytoplasm
aryl hydrocarbon receptor complex
dynein axonemal particle
nucleus
HSP90-CDC37 chaperone complex
ooplasm
sperm head plasma membrane
axonal growth cone
dendritic growth cone
basolateral plasma membrane
melanosome
signalosome
extracellular region
neuronal cell body
inclusion body
brush border membrane
apical plasma membrane
lysosomal membrane
Molecular Function
protein folding chaperone
protein kinase binding
unfolded protein binding
DNA polymerase binding
histone methyltransferase binding
double-stranded RNA binding
CTP binding
histone deacetylase binding
ATP binding
sulfonylurea receptor binding
tau protein binding
TPR domain binding
ubiquitin protein ligase binding
ion channel binding
kinase binding
peptide binding
disordered domain specific binding
dATP binding
heat shock protein binding
protein homodimerization activity
UTP binding
nitric-oxide synthase regulator activity
ATPase activity
GTP binding
ATP-dependent protein binding
identical protein binding
protein dimerization activity
Cellular Location Not Available
Gene Properties
Chromosome Location Not Available
Locus Not Available
SNPs Not Available
Gene Sequence Not Available
Protein Properties
Number of Residues 724
Molecular Weight 83280.505
Theoretical pI 5.039
Pfam Domain Function
Signals Not Available
Transmembrane Regions Not Available
Protein Sequence Not Available
GenBank ID Protein Not Available
UniProtKB/Swiss-Prot ID P11499
UniProtKB/Swiss-Prot Entry Name HS90B_MOUSE
PDB IDs Not Available
GenBank Gene ID Not Available
GeneCard ID Not Available
GenAtlas ID Not Available
HGNC ID Not Available
References
General References
  1. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest AR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE, Ambesi-Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk AM, Chiu KP, Choudhary V, Christoffels A, Clutterbuck DR, Crowe ML, Dalla E, Dalrymple BP, de Bono B, Della Gatta G, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher CF, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras TR, Gojobori T, Green RE, Gustincich S, Harbers M, Hayashi Y, Hensch TK, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan SP, Kruger A, Kummerfeld SK, Kurochkin IV, Lareau LF, Lazarevic D, Lipovich L, Liu J, Liuni S, McWilliam S, Madan Babu M, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H, Mignone F, Miyake S, Morris K, Mottagui-Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa S, Nori F, Ohara O, Okazaki Y, Orlando V, Pang KC, Pavan WJ, Pavesi G, Pesole G, Petrovsky N, Piazza S, Reed J, Reid JF, Ring BZ, Ringwald M, Rost B, Ruan Y, Salzberg SL, Sandelin A, Schneider C, Schonbach C, Sekiguchi K, Semple CA, Seno S, Sessa L, Sheng Y, Shibata Y, Shimada H, Shimada K, Silva D, Sinclair B, Sperling S, Stupka E, Sugiura K, Sultana R, Takenaka Y, Taki K, Tammoja K, Tan SL, Tang S, Taylor MS, Tegner J, Teichmann SA, Ueda HR, van Nimwegen E, Verardo R, Wei CL, Yagi K, Yamanishi H, Zabarovsky E, Zhu S, Zimmer A, Hide W, Bult C, Grimmond SM, Teasdale RD, Liu ET, Brusic V, Quackenbush J, Wahlestedt C, Mattick JS, Hume DA, Kai C, Sasaki D, Tomaru Y, Fukuda S, Kanamori-Katayama M, Suzuki M, Aoki J, Arakawa T, Iida J, Imamura K, Itoh M, Kato T, Kawaji H, Kawagashira N, Kawashima T, Kojima M, Kondo S, Konno H, Nakano K, Ninomiya N, Nishio T, Okada M, Plessy C, Shibata K, Shiraki T, Suzuki S, Tagami M, Waki K, Watahiki A, Okamura-Oho Y, Suzuki H, Kawai J, Hayashizaki Y: The transcriptional landscape of the mammalian genome. Science. 2005 Sep 2;309(5740):1559-63. [PubMed:16141072 ]
  2. Hoffmann T, Hovemann B: Heat-shock proteins, Hsp84 and Hsp86, of mice and men: two related genes encode formerly identified tumour-specific transplantation antigens. Gene. 1988 Dec 30;74(2):491-501. [PubMed:2469626 ]
  3. Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villen J, Haas W, Sowa ME, Gygi SP: A tissue-specific atlas of mouse protein phosphorylation and expression. Cell. 2010 Dec 23;143(7):1174-89. doi: 10.1016/j.cell.2010.12.001. [PubMed:21183079 ]
  4. Church DM, Goodstadt L, Hillier LW, Zody MC, Goldstein S, She X, Bult CJ, Agarwala R, Cherry JL, DiCuccio M, Hlavina W, Kapustin Y, Meric P, Maglott D, Birtle Z, Marques AC, Graves T, Zhou S, Teague B, Potamousis K, Churas C, Place M, Herschleb J, Runnheim R, Forrest D, Amos-Landgraf J, Schwartz DC, Cheng Z, Lindblad-Toh K, Eichler EE, Ponting CP: Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol. 2009 May 5;7(5):e1000112. doi: 10.1371/journal.pbio.1000112. Epub 2009 May 26. [PubMed:19468303 ]
  5. Villen J, Beausoleil SA, Gerber SA, Gygi SP: Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1488-93. doi: 10.1073/pnas.0609836104. Epub 2007 Jan 22. [PubMed:17242355 ]
  6. Trost M, English L, Lemieux S, Courcelles M, Desjardins M, Thibault P: The phagosomal proteome in interferon-gamma-activated macrophages. Immunity. 2009 Jan 16;30(1):143-54. doi: 10.1016/j.immuni.2008.11.006. [PubMed:19144319 ]
  7. Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, Xie Z, Zhang Y, Zwaans BM, Skinner ME, Lombard DB, Zhao Y: SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell. 2013 Jun 27;50(6):919-30. doi: 10.1016/j.molcel.2013.06.001. [PubMed:23806337 ]
  8. Sweet SM, Bailey CM, Cunningham DL, Heath JK, Cooper HJ: Large scale localization of protein phosphorylation by use of electron capture dissociation mass spectrometry. Mol Cell Proteomics. 2009 May;8(5):904-12. doi: 10.1074/mcp.M800451-MCP200. Epub 2009 Jan 8. [PubMed:19131326 ]
  9. Giannakopoulos NV, Luo JK, Papov V, Zou W, Lenschow DJ, Jacobs BS, Borden EC, Li J, Virgin HW, Zhang DE: Proteomic identification of proteins conjugated to ISG15 in mouse and human cells. Biochem Biophys Res Commun. 2005 Oct 21;336(2):496-506. doi: 10.1016/j.bbrc.2005.08.132. [PubMed:16139798 ]
  10. Ballif BA, Carey GR, Sunyaev SR, Gygi SP: Large-scale identification and evolution indexing of tyrosine phosphorylation sites from murine brain. J Proteome Res. 2008 Jan;7(1):311-8. doi: 10.1021/pr0701254. Epub 2007 Nov 23. [PubMed:18034455 ]
  11. Zhou H, Ye M, Dong J, Han G, Jiang X, Wu R, Zou H: Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis. J Proteome Res. 2008 Sep;7(9):3957-67. doi: 10.1021/pr800223m. Epub 2008 Jul 17. [PubMed:18630941 ]
  12. Lee J, Xu Y, Chen Y, Sprung R, Kim SC, Xie S, Zhao Y: Mitochondrial phosphoproteome revealed by an improved IMAC method and MS/MS/MS. Mol Cell Proteomics. 2007 Apr;6(4):669-76. doi: 10.1074/mcp.M600218-MCP200. Epub 2007 Jan 5. [PubMed:17208939 ]
  13. Moore SK, Kozak C, Robinson EA, Ullrich SJ, Appella E: Murine 86- and 84-kDa heat shock proteins, cDNA sequences, chromosome assignments, and evolutionary origins. J Biol Chem. 1989 Apr 5;264(10):5343-51. [PubMed:2925609 ]
  14. Ullrich SJ, Robinson EA, Law LW, Willingham M, Appella E: A mouse tumor-specific transplantation antigen is a heat shock-related protein. Proc Natl Acad Sci U S A. 1986 May;83(10):3121-5. doi: 10.1073/pnas.83.10.3121. [PubMed:3458168 ]
  15. Minami Y, Kimura Y, Kawasaki H, Suzuki K, Yahara I: The carboxy-terminal region of mammalian HSP90 is required for its dimerization and function in vivo. Mol Cell Biol. 1994 Feb;14(2):1459-64. doi: 10.1128/mcb.14.2.1459-1464.1994. [PubMed:8289821 ]
  16. Cao L, Yu K, Banh C, Nguyen V, Ritz A, Raphael BJ, Kawakami Y, Kawakami T, Salomon AR: Quantitative time-resolved phosphoproteomic analysis of mast cell signaling. J Immunol. 2007 Nov 1;179(9):5864-76. doi: 10.4049/jimmunol.179.9.5864. [PubMed:17947660 ]
  17. Okabe T, Chavan R, Fonseca Costa SS, Brenna A, Ripperger JA, Albrecht U: REV-ERBalpha influences the stability and nuclear localization of the glucocorticoid receptor. J Cell Sci. 2016 Nov 1;129(21):4143-4154. doi: 10.1242/jcs.190959. Epub 2016 Sep 29. [PubMed:27686098 ]
  18. Krzemien-Ojak L, Goral A, Joachimiak E, Filipek A, Fabczak H: Interaction of a Novel Chaperone PhLP2A With the Heat Shock Protein Hsp90. J Cell Biochem. 2017 Feb;118(2):420-429. doi: 10.1002/jcb.25669. Epub 2016 Oct 17. [PubMed:27496612 ]
  19. Moore SK, Kozak C, Robinson EA, Ullrich SJ, Appella E: Cloning and nucleotide sequence of the murine hsp84 cDNA and chromosome assignment of related sequences. Gene. 1987;56(1):29-40. doi: 10.1016/0378-1119(87)90155-7. [PubMed:2445630 ]
  20. Moore SK, Rijli F, Appella E: Characterization of the mouse 84-kD heat shock protein gene family. DNA Cell Biol. 1990 Jul-Aug;9(6):387-400. doi: 10.1089/dna.1990.9.387. [PubMed:1976316 ]
  21. Chu CC, Paul WE: Expressed genes in interleukin-4 treated B cells identified by cDNA representational difference analysis. Mol Immunol. 1998 Jun;35(8):487-502. doi: 10.1016/s0161-5890(98)00031-5. [PubMed:9798653 ]
  22. Shaknovich R, Shue G, Kohtz DS: Conformational activation of a basic helix-loop-helix protein (MyoD1) by the C-terminal region of murine HSP90 (HSP84). Mol Cell Biol. 1992 Nov;12(11):5059-68. doi: 10.1128/mcb.12.11.5059-5068.1992. [PubMed:1406681 ]
  23. Wu J, Luo S, Jiang H, Li H: Mammalian CHORD-containing protein 1 is a novel heat shock protein 90-interacting protein. FEBS Lett. 2005 Jan 17;579(2):421-6. doi: 10.1016/j.febslet.2004.12.005. [PubMed:15642353 ]
  24. Smith JC, Duchesne MA, Tozzi P, Ethier M, Figeys D: A differential phosphoproteomic analysis of retinoic acid-treated P19 cells. J Proteome Res. 2007 Aug;6(8):3174-86. doi: 10.1021/pr070122r. Epub 2007 Jul 10. [PubMed:17622165 ]
  25. Okumura F, Okumura AJ, Matsumoto M, Nakayama KI, Hatakeyama S: TRIM8 regulates Nanog via Hsp90beta-mediated nuclear translocation of STAT3 in embryonic stem cells. Biochim Biophys Acta. 2011 Oct;1813(10):1784-92. doi: 10.1016/j.bbamcr.2011.05.013. Epub 2011 Jun 2. [PubMed:21689689 ]
  26. Overath T, Kuckelkorn U, Henklein P, Strehl B, Bonar D, Kloss A, Siele D, Kloetzel PM, Janek K: Mapping of O-GlcNAc sites of 20 S proteasome subunits and Hsp90 by a novel biotin-cystamine tag. Mol Cell Proteomics. 2012 Aug;11(8):467-77. doi: 10.1074/mcp.M111.015966. Epub 2012 May 3. [PubMed:22556278 ]