Hmdb loader
You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Identification
HMDB Protein ID HMDBP14566
Secondary Accession Numbers None
Name Transforming growth factor beta-1 proprotein
Synonyms Not Available
Gene Name TGFB1
Protein Type Unknown
Biological Properties
General Function Not Available
Specific Function Transforming growth factor beta-1 proprotein: Precursor of the Latency-associated peptide (LAP) and Transforming growth factor beta-1 (TGF-beta-1) chains, which constitute the regulatory and active subunit of TGF-beta-1, respectively.Required to maintain the Transforming growth factor beta-1 (TGF-beta-1) chain in a latent state during storage in extracellular matrix (PubMed:28117447). Associates non-covalently with TGF-beta-1 and regulates its activation via interaction with 'milieu molecules', such as LTBP1, LRRC32/GARP and LRRC33/NRROS, that control activation of TGF-beta-1 (PubMed:2022183, PubMed:8617200, PubMed:8939931, PubMed:19750484, PubMed:22278742, PubMed:19651619). Interaction with LRRC33/NRROS regulates activation of TGF-beta-1 in macrophages and microglia (Probable). Interaction with LRRC32/GARP controls activation of TGF-beta-1 on the surface of activated regulatory T-cells (Tregs) (PubMed:19750484, PubMed:22278742, PubMed:19651619). Interaction with integrins (ITGAV:ITGB6 or ITGAV:ITGB8) results in distortion of the Latency-associated peptide chain and subsequent release of the active TGF-beta-1 (PubMed:22278742, PubMed:28117447).Multifunctional protein that regulates the growth and differentiation of various cell types and is involved in various processes, such as normal development, immune function, microglia function and responses to neurodegeneration (By similarity). Activation into mature form follows different steps: following cleavage of the proprotein in the Golgi apparatus, Latency-associated peptide (LAP) and Transforming growth factor beta-1 (TGF-beta-1) chains remain non-covalently linked rendering TGF-beta-1 inactive during storage in extracellular matrix (PubMed:29109152). At the same time, LAP chain interacts with 'milieu molecules', such as LTBP1, LRRC32/GARP and LRRC33/NRROS that control activation of TGF-beta-1 and maintain it in a latent state during storage in extracellular milieus (PubMed:2022183, PubMed:8617200, PubMed:8939931, PubMed:19750484, PubMed:22278742, PubMed:19651619). TGF-beta-1 is released from LAP by integrins (ITGAV:ITGB6 or ITGAV:ITGB8): integrin-binding to LAP stabilizes an alternative conformation of the LAP bowtie tail and results in distortion of the LAP chain and subsequent release of the active TGF-beta-1 (PubMed:22278742, PubMed:28117447). Once activated following release of LAP, TGF-beta-1 acts by binding to TGF-beta receptors (TGFBR1 and TGFBR2), which transduce signal (PubMed:20207738). While expressed by many cells types, TGF-beta-1 only has a very localized range of action within cell environment thanks to fine regulation of its activation by Latency-associated peptide chain (LAP) and 'milieu molecules' (By similarity). Plays an important role in bone remodeling: acts as a potent stimulator of osteoblastic bone formation, causing chemotaxis, proliferation and differentiation in committed osteoblasts (By similarity). Can promote either T-helper 17 cells (Th17) or regulatory T-cells (Treg) lineage differentiation in a concentration-dependent manner (By similarity). At high concentrations, leads to FOXP3-mediated suppression of RORC and down-regulation of IL-17 expression, favoring Treg cell development (By similarity). At low concentrations in concert with IL-6 and IL-21, leads to expression of the IL-17 and IL-23 receptors, favoring differentiation to Th17 cells (By similarity). Stimulates sustained production of collagen through the activation of CREB3L1 by regulated intramembrane proteolysis (RIP) (PubMed:25310401). Mediates SMAD2/3 activation by inducing its phosphorylation and subsequent translocation to the nucleus (PubMed:25893292, PubMed:29483653, PubMed:30696809). Can induce epithelial-to-mesenchymal transition (EMT) and cell migration in various cell types (PubMed:25893292, PubMed:30696809).
Pathways
  • AGE-RAGE signaling pathway in diabetic complications
  • Amoebiasis
  • Cell cycle
  • Cellular senescence
  • Chagas disease
  • Chronic myeloid leukemia
  • Colorectal cancer
  • Cytokine-cytokine receptor interaction
  • Diabetic cardiomyopathy
  • Dilated cardiomyopathy
  • FoxO signaling pathway
  • Gastric cancer
  • Hepatitis B
  • Hepatocellular carcinoma
  • Hippo signaling pathway
  • Human T-cell leukemia virus 1 infection
  • Hypertrophic cardiomyopathy
  • Inflammatory bowel disease
  • Intestinal immune network for IgA production
  • Leishmaniasis
  • Malaria
  • MAPK signaling pathway
  • Non-alcoholic fatty liver disease
  • Osteoclast differentiation
  • Pancreatic cancer
  • Proteoglycans in cancer
  • Relaxin signaling pathway
  • Renal cell carcinoma
  • Rheumatoid arthritis
  • TGF-beta signaling pathway
  • Th17 cell differentiation
  • Toxoplasmosis
  • Tuberculosis
Reactions Not Available
GO Classification
Biological Process
positive regulation vascular endothelial growth factor production
cell-cell junction organization
positive regulation of canonical Wnt receptor signaling pathway
positive regulation of extracellular matrix assembly
negative regulation of cell cycle
negative regulation of extracellular matrix disassembly
positive regulation of bone mineralization
regulation of striated muscle tissue development
regulation of cell proliferation
ATP biosynthetic process
positive regulation of production of miRNAs involved in gene silencing by miRNA
platelet degranulation
response to progesterone stimulus
regulation of blood vessel remodeling
regulation of protein import into nucleus
positive regulation of protein dephosphorylation
negative regulation of cell differentiation
positive regulation of cell migration
macrophage derived foam cell differentiation
cell cycle arrest
leukocyte migration
positive regulation of cell proliferation
negative regulation of fat cell differentiation
chondrocyte differentiation
positive regulation of phosphatidylinositol 3-kinase activity
positive regulation of protein import into nucleus
negative regulation of blood vessel endothelial cell migration
cell migration
negative regulation of epithelial cell proliferation
SMAD protein signal transduction
inflammatory response
positive regulation of protein secretion
positive regulation of superoxide anion generation
response to wounding
BMP signaling pathway
negative regulation of pri-miRNA transcription by RNA polymerase II
hyaluronan catabolic process
ossification involved in bone remodeling
connective tissue replacement involved in inflammatory response wound healing
positive regulation of pathway-restricted SMAD protein phosphorylation
embryonic liver development
positive regulation of collagen biosynthetic process
regulation of SMAD protein signal transduction
lymph node development
negative regulation of biomineral tissue development
positive regulation of epithelial to mesenchymal transition
negative regulation of cytolysis
negative regulation of gene silencing by miRNA
regulation of DNA binding
positive regulation of protein phosphorylation
transforming growth factor beta receptor signaling pathway involved in heart development
positive regulation of interleukin-17 production
protein kinase B signaling cascade
heart valve morphogenesis
heart development
epithelial to mesenchymal transition
aortic valve morphogenesis
negative regulation of production of miRNAs involved in gene silencing by miRNA
positive regulation of pri-miRNA transcription by RNA polymerase II
salivary gland morphogenesis
protein export from nucleus
positive regulation of blood vessel endothelial cell migration
negative regulation of mitotic cell cycle
positive regulation of ERK1 and ERK2 cascade
positive regulation of peptidyl-threonine phosphorylation
regulation of binding
cellular response to organic cyclic compound
negative regulation of protein phosphorylation
positive regulation of peptidyl-tyrosine phosphorylation
hematopoietic progenitor cell differentiation
positive regulation of cellular protein metabolic process
regulation of cell migration
negative regulation of transcription, DNA-dependent
positive regulation of transcription, DNA-dependent
ventricular cardiac muscle tissue morphogenesis
positive regulation of protein kinase B signaling cascade
positive regulation of transcription from RNA polymerase II promoter
positive regulation of cardiac muscle cell differentiation
response to cholesterol
MAPK cascade
negative regulation of cell growth
protein phosphorylation
cytokine-mediated signaling pathway
vasculogenesis
positive regulation of fibroblast migration
positive regulation of protein localization to nucleus
phosphate-containing compound metabolic process
positive regulation of SMAD protein signal transduction
negative regulation of transforming growth factor beta receptor signaling pathway
negative regulation of protein localization to plasma membrane
regulation of transforming growth factor beta receptor signaling pathway
SMAD protein complex assembly
transforming growth factor beta receptor signaling pathway
negative regulation of cell proliferation
lipopolysaccharide-mediated signaling pathway
neural tube development
positive regulation of vascular permeability
positive regulation of gene expression
positive regulation of protein complex assembly
positive regulation of cell division
neural tube closure
response to estradiol stimulus
cellular response to transforming growth factor beta stimulus
positive regulation of MAP kinase activity
negative regulation of macrophage cytokine production
negative regulation of gene expression
common-partner SMAD protein phosphorylation
extracellular matrix assembly
positive regulation of peptidyl-serine phosphorylation
extrinsic apoptotic signaling pathway
membrane protein intracellular domain proteolysis
negative regulation of myoblast differentiation
negative regulation of cell-cell adhesion
negative regulation of hyaluronan biosynthetic process
negative regulation of skeletal muscle tissue development
pathway-restricted SMAD protein phosphorylation
positive regulation of isotype switching to IgA isotypes
positive regulation of microglia differentiation
positive regulation of NAD+ ADP-ribosyltransferase activity
positive regulation of transcription regulatory region DNA binding
receptor catabolic process
epidermal growth factor receptor signaling pathway
positive regulation of chemotaxis
Cellular Component
cell surface
platelet alpha granule lumen
Golgi lumen
cytoplasm
plasma membrane
blood microparticle
nucleus
extracellular region
collagen-containing extracellular matrix
extracellular space
extracellular matrix
Molecular Function
growth factor activity
antigen binding
enzyme binding
type II transforming growth factor beta receptor binding
type III transforming growth factor beta receptor binding
cytokine activity
identical protein binding
type I transforming growth factor beta receptor binding
Cellular Location Not Available
Gene Properties
Chromosome Location Not Available
Locus Not Available
SNPs Not Available
Gene Sequence Not Available
Protein Properties
Number of Residues 390
Molecular Weight 44340.685
Theoretical pI 8.529
Pfam Domain Function
Signals
  • 1-29;
Transmembrane Regions Not Available
Protein Sequence Not Available
GenBank ID Protein Not Available
UniProtKB/Swiss-Prot ID P01137
UniProtKB/Swiss-Prot Entry Name TGFB1_HUMAN
PDB IDs
GenBank Gene ID Not Available
GeneCard ID Not Available
GenAtlas ID Not Available
HGNC ID Not Available
References
General References
  1. Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. Epub 2003 Dec 21. [PubMed:14702039 ]
  2. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [PubMed:15489334 ]
  3. Liu T, Qian WJ, Gritsenko MA, Camp DG 2nd, Monroe ME, Moore RJ, Smith RD: Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J Proteome Res. 2005 Nov-Dec;4(6):2070-80. [PubMed:16335952 ]
  4. Lewandrowski U, Moebius J, Walter U, Sickmann A: Elucidation of N-glycosylation sites on human platelet proteins: a glycoproteomic approach. Mol Cell Proteomics. 2006 Feb;5(2):226-33. Epub 2005 Oct 31. [PubMed:16263699 ]
  5. Watanabe Y, Kinoshita A, Yamada T, Ohta T, Kishino T, Matsumoto N, Ishikawa M, Niikawa N, Yoshiura K: A catalog of 106 single-nucleotide polymorphisms (SNPs) and 11 other types of variations in genes for transforming growth factor-beta1 (TGF-beta1) and its signaling pathway. J Hum Genet. 2002;47(9):478-83. [PubMed:12202987 ]
  6. Finnson KW, Tam BY, Liu K, Marcoux A, Lepage P, Roy S, Bizet AA, Philip A: Identification of CD109 as part of the TGF-beta receptor system in human keratinocytes. FASEB J. 2006 Jul;20(9):1525-7. Epub 2006 Jun 5. [PubMed:16754747 ]
  7. Nakajima M, Kizawa H, Saitoh M, Kou I, Miyazono K, Ikegawa S: Mechanisms for asporin function and regulation in articular cartilage. J Biol Chem. 2007 Nov 2;282(44):32185-92. Epub 2007 Sep 7. [PubMed:17827158 ]
  8. Derynck R, Rhee L, Chen EY, Van Tilburg A: Intron-exon structure of the human transforming growth factor-beta precursor gene. Nucleic Acids Res. 1987 Apr 10;15(7):3188-9. [PubMed:3470709 ]
  9. Derynck R, Jarrett JA, Chen EY, Eaton DH, Bell JR, Assoian RK, Roberts AB, Sporn MB, Goeddel DV: Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells. Nature. 1985 Aug 22-28;316(6030):701-5. [PubMed:3861940 ]
  10. Bourdrel L, Lin CH, Lauren SL, Elmore RH, Sugarman BJ, Hu S, Westcott KR: Recombinant human transforming growth factor-beta 1: expression by Chinese hamster ovary cells, isolation, and characterization. Protein Expr Purif. 1993 Apr;4(2):130-40. [PubMed:8471846 ]
  11. Massague J, Like B: Cellular receptors for type beta transforming growth factor. Ligand binding and affinity labeling in human and rodent cell lines. J Biol Chem. 1985 Mar 10;260(5):2636-45. [PubMed:2982829 ]
  12. Miyazono K, Hellman U, Wernstedt C, Heldin CH: Latent high molecular weight complex of transforming growth factor beta 1. Purification from human platelets and structural characterization. J Biol Chem. 1988 May 5;263(13):6407-15. [PubMed:3162913 ]
  13. Munger JS, Harpel JG, Gleizes PE, Mazzieri R, Nunes I, Rifkin DB: Latent transforming growth factor-beta: structural features and mechanisms of activation. Kidney Int. 1997 May;51(5):1376-82. [PubMed:9150447 ]
  14. Okamoto O, Fujiwara S, Abe M, Sato Y: Dermatopontin interacts with transforming growth factor beta and enhances its biological activity. Biochem J. 1999 Feb 1;337 ( Pt 3):537-41. [PubMed:9895299 ]
  15. Shur I, Lokiec F, Bleiberg I, Benayahu D: Differential gene expression of cultured human osteoblasts. J Cell Biochem. 2001;83(4):547-53. [PubMed:11746498 ]
  16. Archer SJ, Bax A, Roberts AB, Sporn MB, Ogawa Y, Piez KA, Weatherbee JA, Tsang ML, Lucas R, Zheng BL, et al.: Transforming growth factor beta 1: NMR signal assignments of the recombinant protein expressed and isotopically enriched using Chinese hamster ovary cells. Biochemistry. 1993 Feb 2;32(4):1152-63. [PubMed:8424942 ]
  17. Archer SJ, Bax A, Roberts AB, Sporn MB, Ogawa Y, Piez KA, Weatherbee JA, Tsang ML, Lucas R, Zheng BL, et al.: Transforming growth factor beta 1: secondary structure as determined by heteronuclear magnetic resonance spectroscopy. Biochemistry. 1993 Feb 2;32(4):1164-71. [PubMed:8424943 ]
  18. Hinck AP, Archer SJ, Qian SW, Roberts AB, Sporn MB, Weatherbee JA, Tsang ML, Lucas R, Zhang BL, Wenker J, Torchia DA: Transforming growth factor beta 1: three-dimensional structure in solution and comparison with the X-ray structure of transforming growth factor beta 2. Biochemistry. 1996 Jul 2;35(26):8517-34. [PubMed:8679613 ]
  19. Yamada Y, Miyauchi A, Goto J, Takagi Y, Okuizumi H, Kanematsu M, Hase M, Takai H, Harada A, Ikeda K: Association of a polymorphism of the transforming growth factor-beta1 gene with genetic susceptibility to osteoporosis in postmenopausal Japanese women. J Bone Miner Res. 1998 Oct;13(10):1569-76. [PubMed:9783545 ]
  20. Kinoshita A, Saito T, Tomita H, Makita Y, Yoshida K, Ghadami M, Yamada K, Kondo S, Ikegawa S, Nishimura G, Fukushima Y, Nakagomi T, Saito H, Sugimoto T, Kamegaya M, Hisa K, Murray JC, Taniguchi N, Niikawa N, Yoshiura K: Domain-specific mutations in TGFB1 result in Camurati-Engelmann disease. Nat Genet. 2000 Sep;26(1):19-20. [PubMed:10973241 ]
  21. Janssens K, Gershoni-Baruch R, Guanabens N, Migone N, Ralston S, Bonduelle M, Lissens W, Van Maldergem L, Vanhoenacker F, Verbruggen L, Van Hul W: Mutations in the gene encoding the latency-associated peptide of TGF-beta 1 cause Camurati-Engelmann disease. Nat Genet. 2000 Nov;26(3):273-5. [PubMed:11062463 ]
  22. Janssens K, ten Dijke P, Ralston SH, Bergmann C, Van Hul W: Transforming growth factor-beta 1 mutations in Camurati-Engelmann disease lead to increased signaling by altering either activation or secretion of the mutant protein. J Biol Chem. 2003 Feb 28;278(9):7718-24. Epub 2002 Dec 18. [PubMed:12493741 ]
  23. McGowan NW, MacPherson H, Janssens K, Van Hul W, Frith JC, Fraser WD, Ralston SH, Helfrich MH: A mutation affecting the latency-associated peptide of TGFbeta1 in Camurati-Engelmann disease enhances osteoclast formation in vitro. J Clin Endocrinol Metab. 2003 Jul;88(7):3321-6. [PubMed:12843182 ]
  24. Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Burckstummer T, Bennett KL, Superti-Furga G, Colinge J: Initial characterization of the human central proteome. BMC Syst Biol. 2011 Jan 26;5:17. doi: 10.1186/1752-0509-5-17. [PubMed:21269460 ]
  25. Vaca Jacome AS, Rabilloud T, Schaeffer-Reiss C, Rompais M, Ayoub D, Lane L, Bairoch A, Van Dorsselaer A, Carapito C: N-terminome analysis of the human mitochondrial proteome. Proteomics. 2015 Jul;15(14):2519-24. doi: 10.1002/pmic.201400617. Epub 2015 Jun 8. [PubMed:25944712 ]
  26. Sasaki T, Hanisch FG, Deutzmann R, Sakai LY, Sakuma T, Miyamoto T, Yamamoto T, Hannappel E, Chu ML, Lanig H, von der Mark K: Functional consequence of fibulin-4 missense mutations associated with vascular and skeletal abnormalities and cutis laxa. Matrix Biol. 2016 Dec;56:132-149. doi: 10.1016/j.matbio.2016.06.003. Epub 2016 Jun 23. [PubMed:27339457 ]
  27. Chen Q, Lee CE, Denard B, Ye J: Sustained induction of collagen synthesis by TGF-beta requires regulated intramembrane proteolysis of CREB3L1. PLoS One. 2014 Oct 13;9(10):e108528. doi: 10.1371/journal.pone.0108528. eCollection 2014. [PubMed:25310401 ]
  28. Tran DQ, Andersson J, Wang R, Ramsey H, Unutmaz D, Shevach EM: GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3+ regulatory T cells. Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13445-50. doi: 10.1073/pnas.0901944106. Epub 2009 Jul 27. [PubMed:19651619 ]
  29. Suzuki S, Kulkarni AB: Extracellular heat shock protein HSP90beta secreted by MG63 osteosarcoma cells inhibits activation of latent TGF-beta1. Biochem Biophys Res Commun. 2010 Jul 30;398(3):525-31. doi: 10.1016/j.bbrc.2010.06.112. Epub 2010 Jul 1. [PubMed:20599762 ]
  30. Stockis J, Colau D, Coulie PG, Lucas S: Membrane protein GARP is a receptor for latent TGF-beta on the surface of activated human Treg. Eur J Immunol. 2009 Dec;39(12):3315-22. doi: 10.1002/eji.200939684. [PubMed:19750484 ]
  31. Wang R, Zhu J, Dong X, Shi M, Lu C, Springer TA: GARP regulates the bioavailability and activation of TGFbeta. Mol Biol Cell. 2012 Mar;23(6):1129-39. doi: 10.1091/mbc.E11-12-1018. Epub 2012 Jan 25. [PubMed:22278742 ]
  32. Miyazono K, Olofsson A, Colosetti P, Heldin CH: A role of the latent TGF-beta 1-binding protein in the assembly and secretion of TGF-beta 1. EMBO J. 1991 May;10(5):1091-101. [PubMed:2022183 ]
  33. Saharinen J, Taipale J, Keski-Oja J: Association of the small latent transforming growth factor-beta with an eight cysteine repeat of its binding protein LTBP-1. EMBO J. 1996 Jan 15;15(2):245-53. [PubMed:8617200 ]
  34. Dubois CM, Laprise MH, Blanchette F, Gentry LE, Leduc R: Processing of transforming growth factor beta 1 precursor by human furin convertase. J Biol Chem. 1995 May 5;270(18):10618-24. doi: 10.1074/jbc.270.18.10618. [PubMed:7737999 ]
  35. Miyazono K, Heldin CH: Role for carbohydrate structures in TGF-beta 1 latency. Nature. 1989 Mar 9;338(6211):158-60. doi: 10.1038/338158a0. [PubMed:2493139 ]
  36. Gleizes PE, Beavis RC, Mazzieri R, Shen B, Rifkin DB: Identification and characterization of an eight-cysteine repeat of the latent transforming growth factor-beta binding protein-1 that mediates bonding to the latent transforming growth factor-beta1. J Biol Chem. 1996 Nov 22;271(47):29891-6. doi: 10.1074/jbc.271.47.29891. [PubMed:8939931 ]
  37. Hwangbo C, Tae N, Lee S, Kim O, Park OK, Kim J, Kwon SH, Lee JH: Syntenin regulates TGF-beta1-induced Smad activation and the epithelial-to-mesenchymal transition by inhibiting caveolin-mediated TGF-beta type I receptor internalization. Oncogene. 2016 Jan 21;35(3):389-401. doi: 10.1038/onc.2015.100. Epub 2015 Apr 20. [PubMed:25893292 ]
  38. Robertson IB, Rifkin DB: Regulation of the Bioavailability of TGF-beta and TGF-beta-Related Proteins. Cold Spring Harb Perspect Biol. 2016 Jun 1;8(6). pii: 8/6/a021907. doi: 10.1101/cshperspect.a021907. [PubMed:27252363 ]
  39. Qin Y, Garrison BS, Ma W, Wang R, Jiang A, Li J, Mistry M, Bronson RT, Santoro D, Franco C, Robinton DA, Stevens B, Rossi DJ, Lu C, Springer TA: A Milieu Molecule for TGF-beta Required for Microglia Function in the Nervous System. Cell. 2018 Jun 28;174(1):156-171.e16. doi: 10.1016/j.cell.2018.05.027. Epub 2018 Jun 14. [PubMed:29909984 ]
  40. Kim JH, Ham S, Lee Y, Suh GY, Lee YS: TTC3 contributes to TGF-beta1-induced epithelial-mesenchymal transition and myofibroblast differentiation, potentially through SMURF2 ubiquitylation and degradation. Cell Death Dis. 2019 Jan 29;10(2):92. doi: 10.1038/s41419-019-1308-8. [PubMed:30696809 ]
  41. Radaev S, Zou Z, Huang T, Lafer EM, Hinck AP, Sun PD: Ternary complex of transforming growth factor-beta1 reveals isoform-specific ligand recognition and receptor recruitment in the superfamily. J Biol Chem. 2010 May 7;285(19):14806-14. doi: 10.1074/jbc.M109.079921. Epub 2010 Mar 5. [PubMed:20207738 ]
  42. Moulin A, Mathieu M, Lawrence C, Bigelow R, Levine M, Hamel C, Marquette JP, Le Parc J, Loux C, Ferrari P, Capdevila C, Dumas J, Dumas B, Rak A, Bird J, Qiu H, Pan CQ, Edmunds T, Wei RR: Structures of a pan-specific antagonist antibody complexed to different isoforms of TGFbeta reveal structural plasticity of antibody-antigen interactions. Protein Sci. 2014 Dec;23(12):1698-707. doi: 10.1002/pro.2548. Epub 2014 Sep 26. [PubMed:25209176 ]
  43. Dong X, Zhao B, Iacob RE, Zhu J, Koksal AC, Lu C, Engen JR, Springer TA: Force interacts with macromolecular structure in activation of TGF-beta. Nature. 2017 Feb 2;542(7639):55-59. doi: 10.1038/nature21035. Epub 2017 Jan 25. [PubMed:28117447 ]
  44. Zhao B, Xu S, Dong X, Lu C, Springer TA: Prodomain-growth factor swapping in the structure of pro-TGF-beta1. J Biol Chem. 2018 Feb 2;293(5):1579-1589. doi: 10.1074/jbc.M117.809657. Epub 2017 Nov 5. [PubMed:29109152 ]
  45. Kinoshita A, Fukumaki Y, Shirahama S, Miyahara A, Nishimura G, Haga N, Namba A, Ueda H, Hayashi H, Ikegawa S, Seidel J, Niikawa N, Yoshiura K: TGFB1 mutations in four new families with Camurati-Engelmann disease: confirmation of independently arising LAP-domain-specific mutations. Am J Med Genet A. 2004 May 15;127A(1):104-7. doi: 10.1002/ajmg.a.20671. [PubMed:15103729 ]