Record Information |
---|
Version | 5.0 |
---|
Status | Expected but not Quantified |
---|
Creation Date | 2005-11-16 15:48:42 UTC |
---|
Update Date | 2022-11-30 19:02:44 UTC |
---|
HMDB ID | HMDB0000548 |
---|
Secondary Accession Numbers | |
---|
Metabolite Identification |
---|
Common Name | TG(10:0/10:0/10:0) |
---|
Description | TG(10:0/10:0/10:0) or tricapric glyceride is a tridecanoic acid triglyceride or medium chain triglyceride. Triglycerides (TGs) are also known as triacylglycerols or triacylglycerides, meaning that they are glycerides in which the glycerol is esterified with three fatty acid groups (i.e. fatty acid tri-esters of glycerol). TGs may be divided into three general types with respect to their acyl substituents. They are simple or monoacid if they contain only one type of fatty acid, diacid if they contain two types of fatty acids and triacid if three different acyl groups. Chain lengths of the fatty acids in naturally occurring triglycerides can be of varying lengths and saturations but 16, 18 and 20 carbons are the most common. TG(10:0/10:0/10:0), in particular, consists of one chain of decanoic acid at the C-1 position, one chain of decanoic acid at the C-2 position and one chain of decanoic acid acid at the C-3 position. TGs are the main constituent of vegetable oil and animal fats. TGs are major components of very low density lipoprotein (VLDL) and chylomicrons, play an important role in metabolism as energy sources and transporters of dietary fat. They contain more than twice the energy (9 kcal/g) of carbohydrates and proteins. In the intestine, triglycerides are split into glycerol and fatty acids (this process is called lipolysis) with the help of lipases and bile secretions, which can then move into blood vessels. The triglycerides are rebuilt in the blood from their fragments and become constituents of lipoproteins, which deliver the fatty acids to and from fat cells among other functions. Various tissues can release the free fatty acids and take them up as a source of energy. Fat cells can synthesize and store triglycerides. When the body requires fatty acids as an energy source, the hormone glucagon signals the breakdown of the triglycerides by hormone-sensitive lipase to release free fatty acids. As the brain cannot utilize fatty acids as an energy source, the glycerol component of triglycerides can be converted into glucose for brain fuel when it is broken down. (www.cyberlipid.org, www.wikipedia.org). TAGs can serve as fatty acid stores in all cells, but primarily in adipocytes of adipose tissue. The major building block for the synthesis of triacylglycerides, in non-adipose tissue, is glycerol. Adipocytes lack glycerol kinase and so must use another route to TAG synthesis. Specifically, dihydroxyacetone phosphate (DHAP), which is produced during glycolysis, is the precursor for TAG synthesis in adipose tissue. DHAP can also serve as a TAG precursor in non-adipose tissues, but does so to a much lesser extent than glycerol. The use of DHAP for the TAG backbone depends on whether the synthesis of the TAGs occurs in the mitochondria and ER or the ER and the peroxisomes. The ER/mitochondria pathway requires the action of glycerol-3-phosphate dehydrogenase to convert DHAP to glycerol-3-phosphate. Glycerol-3-phosphate acyltransferase then esterifies a fatty acid to glycerol-3-phosphate thereby generating lysophosphatidic acid. The ER/peroxisome reaction pathway uses the peroxisomal enzyme DHAP acyltransferase to acylate DHAP to acyl-DHAP which is then reduced by acyl-DHAP reductase. The fatty acids that are incorporated into TAGs are activated to acyl-CoAs through the action of acyl-CoA synthetases. Two molecules of acyl-CoA are esterified to glycerol-3-phosphate to yield 1,2-diacylglycerol phosphate (also known as phosphatidic acid). The phosphate is then removed by phosphatidic acid phosphatase (PAP1), to generate 1,2-diacylglycerol. This diacylglycerol serves as the substrate for addition of the third fatty acid to make TAG. Intestinal monoacylglycerols, derived from dietary fats, can also serve as substrates for the synthesis of 1,2-diacylglycerols. |
---|
Structure | [H]C(COC(=O)CCCCCCCCC)(COC(=O)CCCCCCCCC)OC(=O)CCCCCCCCC InChI=1S/C33H62O6/c1-4-7-10-13-16-19-22-25-31(34)37-28-30(39-33(36)27-24-21-18-15-12-9-6-3)29-38-32(35)26-23-20-17-14-11-8-5-2/h30H,4-29H2,1-3H3 |
---|
Synonyms | Value | Source |
---|
1,2,3-Propanol tridecanoate | ChEBI | 1,2,3-Tridecanoylglycerol | ChEBI | Capric acid triglyceride | ChEBI | Capric triglyceride | ChEBI | Caprin | ChEBI | Decanoic acid, 1,2,3-propanetriyl ester | ChEBI | Glycerin tridecanoate | ChEBI | Glycerol tricaprate | ChEBI | Glycerol tridecanoate | ChEBI | Glyceryl tricaprate | ChEBI | Glyceryl tridecanoate | ChEBI | TG 10:0/10:0/10:0 | ChEBI | Tri-N-caprin | ChEBI | Tricapric glyceride | ChEBI | Tridecanoin | ChEBI | Tridecanoylglycerol | ChEBI | 1,2,3-Propanol tridecanoic acid | Generator | Caprate triglyceride | Generator | Decanoate, 1,2,3-propanetriyl ester | Generator | Glycerin tridecanoic acid | Generator | Glycerol tricapric acid | Generator | Glycerol tridecanoic acid | Generator | Glyceryl tricapric acid | Generator | Glyceryl tridecanoic acid | Generator | 1-Animal fats-2-animal fats-3-animal fats-glycerol | HMDB | 1-Decanoic acid-2-decanoic acid-3-decanoic acid-glycerol | HMDB | TAG(10:0/10:0/10:0) | HMDB | Triacylglycerol | HMDB | Tracylglycerol(30:0) | HMDB | Triglyceride | HMDB | Tracylglycerol(10:0/10:0/10:0) | HMDB | TAG(30:0) | HMDB | TG(30:0) | HMDB | 1,2, 3-Propanetriyl-decanoate | HMDB | 1,2, 3-Propanetriyl-decanoic acid | HMDB | 2,3-Bis(decanoyloxy)propyl decanoate | HMDB | 2,3-Bis(decanoyloxy)propyl decanoate (acd/name 4.0) | HMDB | 2,3-Bis(decanoyloxy)propyl decanoic acid | HMDB | Glycerol tricaprin | HMDB | Tri-decanoin | HMDB | Tricaprin | HMDB | TG(10:0/10:0/10:0) | Lipid Annotator, ChEBI |
|
---|
Chemical Formula | C33H62O6 |
---|
Average Molecular Weight | 554.853 |
---|
Monoisotopic Molecular Weight | 554.454639716 |
---|
IUPAC Name | 1,3-bis(decanoyloxy)propan-2-yl decanoate |
---|
Traditional Name | tricaprin |
---|
CAS Registry Number | 621-71-6 |
---|
SMILES | [H]C(COC(=O)CCCCCCCCC)(COC(=O)CCCCCCCCC)OC(=O)CCCCCCCCC |
---|
InChI Identifier | InChI=1S/C33H62O6/c1-4-7-10-13-16-19-22-25-31(34)37-28-30(39-33(36)27-24-21-18-15-12-9-6-3)29-38-32(35)26-23-20-17-14-11-8-5-2/h30H,4-29H2,1-3H3 |
---|
InChI Key | LADGBHLMCUINGV-UHFFFAOYSA-N |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as triacylglycerols. These are glycerides consisting of three fatty acid chains covalently bonded to a glycerol molecule through ester linkages. |
---|
Kingdom | Organic compounds |
---|
Super Class | Lipids and lipid-like molecules |
---|
Class | Glycerolipids |
---|
Sub Class | Triradylcglycerols |
---|
Direct Parent | Triacylglycerols |
---|
Alternative Parents | |
---|
Substituents | - Triacyl-sn-glycerol
- Tricarboxylic acid or derivatives
- Fatty acid ester
- Fatty acyl
- Carboxylic acid ester
- Carboxylic acid derivative
- Organic oxygen compound
- Organic oxide
- Hydrocarbon derivative
- Organooxygen compound
- Carbonyl group
- Aliphatic acyclic compound
|
---|
Molecular Framework | Aliphatic acyclic compounds |
---|
External Descriptors | |
---|
Ontology |
---|
Physiological effect | |
---|
Disposition | |
---|
Process | |
---|
Role | |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Molecular Properties | |
---|
Experimental Chromatographic Properties | Not Available |
---|
Predicted Molecular Properties | |
---|
Predicted Chromatographic Properties | Predicted Collision Cross SectionsPredicted Kovats Retention IndicesUnderivatized |
---|
Spectra |
---|
| GC-MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
Experimental GC-MS | GC-MS Spectrum - TG(10:0/10:0/10:0) EI-B (Non-derivatized) | splash10-0a59-3958000000-f57192615ab610f32def | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - TG(10:0/10:0/10:0) EI-B (Non-derivatized) | splash10-0a59-3958000000-f57192615ab610f32def | 2018-05-18 | HMDB team, MONA, MassBank | View Spectrum |
MS/MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
Experimental LC-MS/MS | LC-MS/MS Spectrum - TG(10:0/10:0/10:0) Quattro_QQQ 10V, Positive-QTOF (Annotated) | splash10-0a4i-0000190000-62ceec1552f50a5d7886 | 2012-07-24 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - TG(10:0/10:0/10:0) Quattro_QQQ 25V, Positive-QTOF (Annotated) | splash10-0a4i-0175090000-8c7de03a1649bbcb9482 | 2012-07-24 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - TG(10:0/10:0/10:0) Quattro_QQQ 40V, Positive-QTOF (Annotated) | splash10-0089-9010000000-4e7483739c7dcb61b0bc | 2012-07-24 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - TG(10:0/10:0/10:0) EI-B (HITACHI M-80) , Positive-QTOF | splash10-0a59-3958000000-f57192615ab610f32def | 2012-08-31 | HMDB team, MONA | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(10:0/10:0/10:0) 10V, Positive-QTOF | splash10-00di-0000090000-ce340e48f0c1c82582ea | 2017-10-04 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(10:0/10:0/10:0) 20V, Positive-QTOF | splash10-00di-0000090000-ce340e48f0c1c82582ea | 2017-10-04 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(10:0/10:0/10:0) 40V, Positive-QTOF | splash10-053r-0009070000-2c86bfc78962fbd6aa8d | 2017-10-04 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(10:0/10:0/10:0) 10V, Positive-QTOF | splash10-03di-0000090000-2a5a4f209f02f40b110f | 2021-09-22 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(10:0/10:0/10:0) 20V, Positive-QTOF | splash10-03di-0000090000-2a5a4f209f02f40b110f | 2021-09-22 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(10:0/10:0/10:0) 40V, Positive-QTOF | splash10-03ii-0909090000-c6a9641978779d1182b0 | 2021-09-22 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(10:0/10:0/10:0) 10V, Negative-QTOF | splash10-0ue9-0527090000-00cdfe845f15d4b6a661 | 2021-09-23 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(10:0/10:0/10:0) 20V, Negative-QTOF | splash10-000t-0933010000-de250ac1d1f0d8fcdca2 | 2021-09-23 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(10:0/10:0/10:0) 40V, Negative-QTOF | splash10-00dj-0912000000-3aa31014b1eb3b307c92 | 2021-09-23 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(10:0/10:0/10:0) 10V, Positive-QTOF | splash10-004i-0000090000-add7d9098153c7a00e9a | 2021-09-24 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(10:0/10:0/10:0) 20V, Positive-QTOF | splash10-004i-0000090000-add7d9098153c7a00e9a | 2021-09-24 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(10:0/10:0/10:0) 40V, Positive-QTOF | splash10-004i-0000090000-add7d9098153c7a00e9a | 2021-09-24 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(10:0/10:0/10:0) 10V, Positive-QTOF | splash10-0a4i-0102090000-747370baaa832594f1b2 | 2021-09-25 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(10:0/10:0/10:0) 20V, Positive-QTOF | splash10-0a59-5727790000-91d904d103a37903b33b | 2021-09-25 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(10:0/10:0/10:0) 40V, Positive-QTOF | splash10-0bu0-3591100000-2da6107e763a64b2df76 | 2021-09-25 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(10:0/10:0/10:0) 10V, Positive-QTOF | splash10-00di-0000090000-d6cd7cf63c9fb0b8a266 | 2021-09-25 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(10:0/10:0/10:0) 20V, Positive-QTOF | splash10-00di-0000090000-d6cd7cf63c9fb0b8a266 | 2021-09-25 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - TG(10:0/10:0/10:0) 40V, Positive-QTOF | splash10-053r-0109070000-6b4138a13a27d3e87308 | 2021-09-25 | Wishart Lab | View Spectrum |
NMR SpectraSpectrum Type | Description | Deposition Date | Source | View |
---|
Predicted 1D NMR | 13C NMR Spectrum (1D, 100 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 1000 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 200 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 300 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 400 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 500 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 600 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 700 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 800 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 900 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | 2022-08-21 | Wishart Lab | View Spectrum | Experimental 2D NMR | [1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, CDCl3, experimental) | 2012-12-05 | Wishart Lab | View Spectrum |
|
---|
Biological Properties |
---|
Cellular Locations | - Extracellular
- Membrane (predicted from logP)
|
---|
Biospecimen Locations | Not Available |
---|
Tissue Locations | Not Available |
---|
Pathways | |
---|
Normal Concentrations |
---|
| Not Available |
---|
Abnormal Concentrations |
---|
| Not Available |
---|
Associated Disorders and Diseases |
---|
Disease References | None |
---|
Associated OMIM IDs | None |
---|
External Links |
---|
DrugBank ID | Not Available |
---|
Phenol Explorer Compound ID | Not Available |
---|
FooDB ID | FDB003134 |
---|
KNApSAcK ID | Not Available |
---|
Chemspider ID | 62521 |
---|
KEGG Compound ID | Not Available |
---|
BioCyc ID | Not Available |
---|
BiGG ID | Not Available |
---|
Wikipedia Link | Not Available |
---|
METLIN ID | 5532 |
---|
PubChem Compound | 69310 |
---|
PDB ID | Not Available |
---|
ChEBI ID | 77388 |
---|
Food Biomarker Ontology | Not Available |
---|
VMH ID | Not Available |
---|
MarkerDB ID | Not Available |
---|
Good Scents ID | rw1368221 |
---|
References |
---|
Synthesis Reference | Selmi, B.; Gontier, E.; Ergan, F.; Thomas, D. Effects of fatty acid chain length and unsaturation number on triglyceride synthesis catalyzed by immobilized lipase in solvent-free medium. Enzyme and Microbial Technology (1998), 23(3/4), 182-186. |
---|
Material Safety Data Sheet (MSDS) | Download (PDF) |
---|
General References | - Troller JA, Bozeman MA: Isolation and characterization of a staphylococcal lipase. Appl Microbiol. 1970 Sep;20(3):480-4. [PubMed:5485729 ]
- Fujikawa H, Ibe A, Wauke T, Morozumi S, Mori H: Flavor production from edible oils and their constituents by Penicillium corylophilum. Shokuhin Eiseigaku Zasshi. 2002 Jun;43(3):160-4. [PubMed:12238154 ]
- Tetrick MA, Greer FR, Benevenga NJ: Blood D-(-)-3-hydroxybutyrate concentrations after oral administration of trioctanoin, trinonanoin, or tridecanoin to newborn rhesus monkeys (Macaca mulatta). Comp Med. 2010 Dec;60(6):486-90. [PubMed:21262136 ]
- Kuksis A, Stachnyk O, Holub BJ: Improved quantitation of plasma lipids by direct gas-liquid chromatography. J Lipid Res. 1969 Nov;10(6):660-7. [PubMed:5348124 ]
- Kuksis A, Marai L: Determination of the complete structure of natural lecithins. Lipids. 1967 May;2(3):217-24. [PubMed:17805770 ]
- Brasiello A, Crescitelli S, Milano G: Development of a coarse-grained model for simulations of tridecanoin liquid-solid phase transitions. Phys Chem Chem Phys. 2011 Oct 6;13(37):16618-28. doi: 10.1039/c1cp20604d. Epub 2011 Aug 22. [PubMed:21858376 ]
- Litchfield C, Miller E, Harlow RD, Reiser R: The triglyceride composition of 17 seed fats rich in octanoic, decanoic, or lauric acid. Lipids. 1967 Jul;2(4):345-50. [PubMed:17805764 ]
- Straarup EM, Danielsen V, Hoy CE, Jakobsen K: Dietary structured lipids for post-weaning piglets: fat digestibility, nitrogen retention and fatty acid profiles of tissues. J Anim Physiol Anim Nutr (Berl). 2006 Apr;90(3-4):124-35. [PubMed:16519757 ]
- Straarup EM, Hoy CE: Structured lipids improve fat absorption in normal and malabsorbing rats. J Nutr. 2000 Nov;130(11):2802-8. [PubMed:11053524 ]
|
---|