Hmdb loader
Show more...Show more...Show more...Show more...Show more...Show more...Show more...
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2023-02-21 17:15:10 UTC
HMDB IDHMDB0000784
Secondary Accession Numbers
  • HMDB00784
Metabolite Identification
Common NameAzelaic acid
DescriptionAzelaic acid (AZA) is a naturally occurring saturated nine-carbon dicarboxylic acid (COOH (CH2)7-COOH). It possesses a variety of biological actions both in vitro and in vivo. Interest in the biological activity of AZA arose originally out of studies of skin surface lipids and the pathogenesis of hypochromia in pityriasis versicolor infection. Later, it was shown that Pityrosporum can oxidize unsaturated fatty acids to C8-C12 dicarboxylic acids that are cornpetitive inhibitors of tyrosinase in vitro. Azelaic acid was chosen for further investigation and development of a new topical drug for treating hyperpigmentary disorders for the following reasons: it possesses a middle-range of antityrosinase activity, is inexpensive, and more soluble to be incorporated into a base cream than other dicarboxylic acids. Azelaic acid is another option for the topical treatment of mild to moderate inflammatory acne vulgaris. It offers effectiveness similar to that of other agents without the systemic side effects of oral antibiotics or the allergic sensitization of topical benzoyl peroxide and with less irritation than tretinoin. Azelaic acid is less expensive than certain other prescription acne preparations, but it is much more expensive than nonprescription benzoyl peroxide preparations. Whether it is safe and effective when used in combination with other agents is not known. (PMID: 7737781 , 8961845 ).
Structure
Data?1676999710
Synonyms
Chemical FormulaC9H16O4
Average Molecular Weight188.2209
Monoisotopic Molecular Weight188.104859
IUPAC Namenonanedioic acid
Traditional Nameazelaic acid
CAS Registry Number123-99-9
SMILES
OC(=O)CCCCCCCC(O)=O
InChI Identifier
InChI=1S/C9H16O4/c10-8(11)6-4-2-1-3-5-7-9(12)13/h1-7H2,(H,10,11)(H,12,13)
InChI KeyBDJRBEYXGGNYIS-UHFFFAOYSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as medium-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassFatty acids and conjugates
Direct ParentMedium-chain fatty acids
Alternative Parents
Substituents
  • Medium-chain fatty acid
  • Dicarboxylic acid or derivatives
  • Carboxylic acid
  • Carboxylic acid derivative
  • Organic oxygen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
Physiological effect
Disposition
Biological locationRoute of exposureSource
Process
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point106.5 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility2.4 mg/mLNot Available
LogP1.57HANSCH,C ET AL. (1995)
Experimental Chromatographic Properties

Experimental Collision Cross Sections

Adduct TypeData SourceCCS Value (Å2)Reference
[M-H]-MetCCS_train_neg137.37830932474
[M-H]-Not Available139.3http://allccs.zhulab.cn/database/detail?ID=AllCCS00000214
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular LocationsNot Available
Biospecimen Locations
  • Blood
  • Breast Milk
  • Cerebrospinal Fluid (CSF)
  • Feces
  • Saliva
  • Sweat
  • Urine
Tissue Locations
  • Epidermis
  • Prostate
Pathways
Normal Concentrations
Abnormal Concentrations
Associated Disorders and Diseases
Disease References
Stomach cancer
  1. Yu L, Aa J, Xu J, Sun M, Qian S, Cheng L, Yang S, Shi R: Metabolomic phenotype of gastric cancer and precancerous stages based on gas chromatography time-of-flight mass spectrometry. J Gastroenterol Hepatol. 2011 Aug;26(8):1290-7. doi: 10.1111/j.1440-1746.2011.06724.x. [PubMed:21443661 ]
Colorectal cancer
  1. Brown DG, Rao S, Weir TL, O'Malia J, Bazan M, Brown RJ, Ryan EP: Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016 Jun 6;4:11. doi: 10.1186/s40170-016-0151-y. eCollection 2016. [PubMed:27275383 ]
  2. Sinha R, Ahn J, Sampson JN, Shi J, Yu G, Xiong X, Hayes RB, Goedert JJ: Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations. PLoS One. 2016 Mar 25;11(3):e0152126. doi: 10.1371/journal.pone.0152126. eCollection 2016. [PubMed:27015276 ]
  3. Goedert JJ, Sampson JN, Moore SC, Xiao Q, Xiong X, Hayes RB, Ahn J, Shi J, Sinha R: Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 2014 Sep;35(9):2089-96. doi: 10.1093/carcin/bgu131. Epub 2014 Jul 18. [PubMed:25037050 ]
Attachment loss
  1. Liebsch C, Pitchika V, Pink C, Samietz S, Kastenmuller G, Artati A, Suhre K, Adamski J, Nauck M, Volzke H, Friedrich N, Kocher T, Holtfreter B, Pietzner M: The Saliva Metabolome in Association to Oral Health Status. J Dent Res. 2019 Jun;98(6):642-651. doi: 10.1177/0022034519842853. Epub 2019 Apr 26. [PubMed:31026179 ]
Missing teeth
  1. Liebsch C, Pitchika V, Pink C, Samietz S, Kastenmuller G, Artati A, Suhre K, Adamski J, Nauck M, Volzke H, Friedrich N, Kocher T, Holtfreter B, Pietzner M: The Saliva Metabolome in Association to Oral Health Status. J Dent Res. 2019 Jun;98(6):642-651. doi: 10.1177/0022034519842853. Epub 2019 Apr 26. [PubMed:31026179 ]
Periodontal Probing Depth
  1. Liebsch C, Pitchika V, Pink C, Samietz S, Kastenmuller G, Artati A, Suhre K, Adamski J, Nauck M, Volzke H, Friedrich N, Kocher T, Holtfreter B, Pietzner M: The Saliva Metabolome in Association to Oral Health Status. J Dent Res. 2019 Jun;98(6):642-651. doi: 10.1177/0022034519842853. Epub 2019 Apr 26. [PubMed:31026179 ]
Eosinophilic esophagitis
  1. Slae, M., Huynh, H., Wishart, D.S. (2014). Analysis of 30 normal pediatric urine samples via NMR spectroscopy (unpublished work). NA.
Associated OMIM IDs
DrugBank IDDB00548
Phenol Explorer Compound IDNot Available
FooDB IDFDB012192
KNApSAcK IDC00045634
Chemspider ID2179
KEGG Compound IDC08261
BioCyc IDCPD0-1265
BiGG IDNot Available
Wikipedia LinkAzelaic_Acid
METLIN ID5750
PubChem Compound2266
PDB IDNot Available
ChEBI ID48131
Food Biomarker OntologyNot Available
VMH IDC08261
MarkerDB IDMDB00000251
Good Scents IDNot Available
References
Synthesis ReferenceChen, Song; Yan, Jinlong. Synthesis of azelaic acid by chemical oxidation with oleic acid. Pige Huagong (2003), 20(6), 31-35.
Material Safety Data Sheet (MSDS)Download (PDF)
General References

Enzymes

General function:
Involved in oxidoreductase activity
Specific function:
This is a copper-containing oxidase that functions in the formation of pigments such as melanins and other polyphenolic compounds. Catalyzes the rate-limiting conversions of tyrosine to DOPA, DOPA to DOPA-quinone and possibly 5,6-dihydroxyindole to indole-5,6 quinone.
Gene Name:
TYR
Uniprot ID:
P14679
Molecular weight:
60392.69
References
  1. Schallreuter KU, Wood JW: A possible mechanism of action for azelaic acid in the human epidermis. Arch Dermatol Res. 1990;282(3):168-71. [PubMed:2114832 ]
  2. Nazzaro-Porro M: Azelaic acid. J Am Acad Dermatol. 1987 Dec;17(6):1033-41. [PubMed:2963038 ]
  3. Picardo M, Passi S, Sirianni MC, Fiorilli M, Russo GD, Cortesi E, Barile G, Breathnach AS, Nazzaro-Porro M: Activity of azelaic acid on cultures of lymphoma- and leukemia-derived cell lines, normal resting and stimulated lymphocytes and 3T3 fibroblasts. Biochem Pharmacol. 1985 May 15;34(10):1653-8. [PubMed:4004885 ]
  4. Nazzaro-Porro M, Passi S, Balus L, Breathnach A, Martin B, Morpurgo G: Effect of dicarboxylic acids on lentigo maligna. J Invest Dermatol. 1979 Jun;72(6):296-305. [PubMed:448162 ]
General function:
Involved in oxidoreductase activity
Specific function:
Efficiently catalyzes the reduction of progesterone, androstenedione, 17-alpha-hydroxyprogesterone and testosterone to 5-beta-reduced metabolites. The bile acid intermediates 7-alpha,12-alpha-dihydroxy-4-cholesten-3-one and 7-alpha-hydroxy-4-cholesten-3-one can also act as substrates.
Gene Name:
AKR1D1
Uniprot ID:
P51857
Molecular weight:
32889.38
References
  1. Stamatiadis D, Bulteau-Portois MC, Mowszowicz I: Inhibition of 5 alpha-reductase activity in human skin by zinc and azelaic acid. Br J Dermatol. 1988 Nov;119(5):627-32. [PubMed:3207614 ]
General function:
Involved in 3-oxo-5-alpha-steroid 4-dehydrogenase activity
Specific function:
Converts testosterone (T) into 5-alpha-dihydrotestosterone (DHT) and progesterone or corticosterone into their corresponding 5-alpha-3-oxosteroids. It plays a central role in sexual differentiation and androgen physiology.
Gene Name:
SRD5A2
Uniprot ID:
P31213
Molecular weight:
28407.035
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [PubMed:17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [PubMed:17016423 ]
  3. Stamatiadis D, Bulteau-Portois MC, Mowszowicz I: Inhibition of 5 alpha-reductase activity in human skin by zinc and azelaic acid. Br J Dermatol. 1988 Nov;119(5):627-32. [PubMed:3207614 ]