Record Information |
---|
Version | 5.0 |
---|
Status | Detected and Quantified |
---|
Creation Date | 2009-11-30 15:50:56 UTC |
---|
Update Date | 2023-05-30 20:55:50 UTC |
---|
HMDB ID | HMDB0013205 |
---|
Secondary Accession Numbers | |
---|
Metabolite Identification |
---|
Common Name | 9-Decenoylcarnitine |
---|
Description | 9-Decenoylcarnitine is an acylcarnitine. More specifically, it is an 9-decenoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279 ). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review (PMID: 35710135 ), acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 9-Decenoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 9-decenoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494 ). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. In particular 9-decenoylcarnitine is elevated in the blood or plasma of individuals with overweight (PMID: 30322392 ). It is also decreased in the blood or plasma of individuals with schizophrenia (PMID: 31161852 ) and familial mediterranean fever (PMID: 29900937 ). Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279 ). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available (PMID: 35710135 ). | Read more...
---|
Structure | C[N+](C)(C)CC(CC([O-])=O)OC(=O)CCCCCCCC=C InChI=1S/C17H31NO4/c1-5-6-7-8-9-10-11-12-17(21)22-15(13-16(19)20)14-18(2,3)4/h5,15H,1,6-14H2,2-4H3 |
---|
Synonyms | Not Available |
---|
Chemical Formula | C17H31NO4 |
---|
Average Molecular Weight | 313.4323 |
---|
Monoisotopic Molecular Weight | 313.225308485 |
---|
IUPAC Name | 3-(dec-9-enoyloxy)-4-(trimethylazaniumyl)butanoate |
---|
Traditional Name | 3-(dec-9-enoyloxy)-4-(trimethylammonio)butanoate |
---|
CAS Registry Number | Not Available |
---|
SMILES | C[N+](C)(C)CC(CC([O-])=O)OC(=O)CCCCCCCC=C |
---|
InChI Identifier | InChI=1S/C17H31NO4/c1-5-6-7-8-9-10-11-12-17(21)22-15(13-16(19)20)14-18(2,3)4/h5,15H,1,6-14H2,2-4H3 |
---|
InChI Key | GOOOCIIXFLVRAG-UHFFFAOYSA-N |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as acyl carnitines. These are organic compounds containing a fatty acid with the carboxylic acid attached to carnitine through an ester bond. |
---|
Kingdom | Organic compounds |
---|
Super Class | Lipids and lipid-like molecules |
---|
Class | Fatty Acyls |
---|
Sub Class | Fatty acid esters |
---|
Direct Parent | Acyl carnitines |
---|
Alternative Parents | |
---|
Substituents | - Acyl-carnitine
- Dicarboxylic acid or derivatives
- Tetraalkylammonium salt
- Quaternary ammonium salt
- Carboxylic acid ester
- Carboxylic acid salt
- Carboxylic acid derivative
- Carboxylic acid
- Organic nitrogen compound
- Organooxygen compound
- Organonitrogen compound
- Organic salt
- Hydrocarbon derivative
- Organic oxide
- Organopnictogen compound
- Organic oxygen compound
- Carbonyl group
- Amine
- Aliphatic acyclic compound
|
---|
Molecular Framework | Aliphatic acyclic compounds |
---|
External Descriptors | Not Available |
---|
Ontology |
---|
Physiological effect | |
---|
Disposition | Biological locationRoute of exposureSourceExogenousFood- Food (HMDB: HMDB0013205)
Animal originMilk and milk productUnfermented milk- Cow milk, pasteurized, vitamin A + D added, 0% fat (FooDB: FOOD00889)
- Cow milk, pasteurized, vitamin A + D added, 1% fat (FooDB: FOOD00890)
- Cow milk, pasteurized, vitamin A + D added, 2% fat (FooDB: FOOD00891)
- Cow milk, pasteurized, vitamin D added, 3.25% fat (FooDB: FOOD00892)
- Exogenous (HMDB: HMDB0013205)
Endogenous |
---|
Process | |
---|
Role | |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Molecular Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Experimental Chromatographic Properties | Not Available |
---|
Predicted Molecular Properties | | Show more...
---|
Predicted Chromatographic Properties | Predicted Collision Cross SectionsPredicted Kovats Retention IndicesUnderivatized | Show more...
---|
Spectra |
---|
| GC-MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
Predicted GC-MS | Predicted GC-MS Spectrum - 9-Decenoylcarnitine GC-MS (Non-derivatized) - 70eV, Positive | splash10-00di-9300000000-6870bdfe92ed22fee2d8 | 2016-09-22 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - 9-Decenoylcarnitine GC-MS (Non-derivatized) - 70eV, Positive | Not Available | 2021-10-12 | Wishart Lab | View Spectrum |
MS/MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 9-Decenoylcarnitine 10V, Positive-QTOF | splash10-03di-0009000000-472f13386108ad138744 | 2021-09-23 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 9-Decenoylcarnitine 20V, Positive-QTOF | splash10-01p9-9005000000-7503d1640f97d538574d | 2021-09-23 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 9-Decenoylcarnitine 40V, Positive-QTOF | splash10-000i-9000000000-e9262cbaff8cb4ad0ba6 | 2021-09-23 | Wishart Lab | View Spectrum |
NMR SpectraSpectrum Type | Description | Deposition Date | Source | View |
---|
Predicted 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 100 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 1000 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 200 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 300 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 400 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 500 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 600 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 700 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 800 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 900 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum |
| Show more...
---|
Biological Properties |
---|
Cellular Locations | |
---|
Biospecimen Locations | |
---|
Tissue Locations | Not Available |
---|
Pathways | |
---|
Normal Concentrations |
---|
| |
Blood | Detected and Quantified | 0.17 +/- 0.04 uM | Adult (>18 years old) | Both | Normal | | details | Blood | Detected but not Quantified | Not Quantified | Adult (>18 years old) | Both | Normal | | details | Blood | Detected and Quantified | 0.12-0.40 uM | Adult (>18 years old) | Both | Normal | | details | Blood | Detected and Quantified | 0.22(0.06) uM | Adult (>18 years old) | Both | Normal | | details | Feces | Detected and Quantified | 0.3 +/- 0.14 nmol/g wet feces | Adult (>18 years old) | Both | Normal | | details | Feces | Detected and Quantified | 0.47 +/- 0.23 nmol/g wet feces | Adult (>18 years old) | Both | Normal | | details | Urine | Detected and Quantified | 0.14 (0.06-0.32) umol/mmol creatinine | Adult (>18 years old) | Both | Normal | | details | Urine | Detected and Quantified | 0.08 (0.02-0.15) umol/mmol creatinine | Newborn (0-30 days old) | Both | Normal | | details | Urine | Detected but not Quantified | Not Quantified | Adult (>18 years old) | Both | Normal | | details | Urine | Detected and Quantified | 0.03-0.2 umol/mmol creatinine | Newborn (0-30 days old) | Both | Normal | | details | Urine | Detected and Quantified | 0.08 +/- 0.04 umol/mmol creatinine | Newborn (0-30 days old) | Female | Normal | | details | Urine | Detected and Quantified | 0.09 +/- 0.04 umol/mmol creatinine | Newborn (0-30 days old) | Male | Normal | | details |
| Show more...
---|
Abnormal Concentrations |
---|
| |
Blood | Detected and Quantified | 0.28(0.09) uM | Adult (>18 years old) | Both | Heart failure with preserved ejection fraction | | details | Blood | Detected and Quantified | 0.151 +/- 0.045 uM | Children (1-13 years old) | Both | Obesity | | details | Blood | Detected and Quantified | 0.156 +/- 0.049 uM | Children (1-13 years old) | Both | Obesity | | details | Blood | Detected and Quantified | 0.204 (0.0677) uM | Adult (>18 years old) | Female | Pregnancy with fetus having congenital heart defect | | details |
|
---|
Associated Disorders and Diseases |
---|
Disease References | Obesity |
---|
- Simone Wahl, Christina Holzapfel, Zhonghao Yu, Michaela Breier, Ivan Kondofersky, Christiane Fuchs, Paula Singmann, Cornelia Prehn, Jerzy Adamski, Harald Grallert, Thomas Illig, Rui Wang-Sattler, Thomas Reinehr (2013). Metabolomics reveals determinants of weight loss during lifestyle intervention in obese children. Metabolomics.
|
|
---|
Associated OMIM IDs | |
---|
External Links |
---|
DrugBank ID | Not Available |
---|
Phenol Explorer Compound ID | Not Available |
---|
FooDB ID | FDB029331 |
---|
KNApSAcK ID | Not Available |
---|
Chemspider ID | 35032589 |
---|
KEGG Compound ID | Not Available |
---|
BioCyc ID | Not Available |
---|
BiGG ID | Not Available |
---|
Wikipedia Link | Not Available |
---|
METLIN ID | Not Available |
---|
PubChem Compound | 53481651 |
---|
PDB ID | Not Available |
---|
ChEBI ID | Not Available |
---|
Food Biomarker Ontology | Not Available |
---|
VMH ID | Not Available |
---|
MarkerDB ID | Not Available |
---|
Good Scents ID | Not Available |
---|
References |
---|
Synthesis Reference | Not Available |
---|
Material Safety Data Sheet (MSDS) | Not Available |
---|
General References | - Ferdinandusse S, Mulders J, IJlst L, Denis S, Dacremont G, Waterham HR, Wanders RJ: Molecular cloning and expression of human carnitine octanoyltransferase: evidence for its role in the peroxisomal beta-oxidation of branched-chain fatty acids. Biochem Biophys Res Commun. 1999 Sep 16;263(1):213-8. [PubMed:10486279 ]
- Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
- Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
- Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
- Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
- FRITZ IB: Action of carnitine on long chain fatty acid oxidation by liver. Am J Physiol. 1959 Aug;197:297-304. doi: 10.1152/ajplegacy.1959.197.2.297. [PubMed:13825279 ]
- Violante S, Achetib N, van Roermund CWT, Hagen J, Dodatko T, Vaz FM, Waterham HR, Chen H, Baes M, Yu C, Argmann CA, Houten SM: Peroxisomes can oxidize medium- and long-chain fatty acids through a pathway involving ABCD3 and HSD17B4. FASEB J. 2019 Mar;33(3):4355-4364. doi: 10.1096/fj.201801498R. Epub 2018 Dec 12. [PubMed:30540494 ]
- Kang M, Yoo HJ, Kim M, Kim M, Lee JH: Metabolomics identifies increases in the acylcarnitine profiles in the plasma of overweight subjects in response to mild weight loss: a randomized, controlled design study. Lipids Health Dis. 2018 Oct 15;17(1):237. doi: 10.1186/s12944-018-0887-1. [PubMed:30322392 ]
- Cao B, Wang D, Pan Z, McIntyre RS, Brietzke E, Subramanieapillai M, Nozari Y, Wang J: Metabolic profiling for water-soluble metabolites in patients with schizophrenia and healthy controls in a Chinese population: A case-control study. World J Biol Psychiatry. 2020 Jun;21(5):357-367. doi: 10.1080/15622975.2019.1615639. Epub 2019 Jun 4. [PubMed:31161852 ]
- Kiykim E, Aktuglu Zeybek AC, Barut K, Zubarioglu T, Cansever MS, Alsancak S, Kasapcopur O: Screening of Free Carnitine and Acylcarnitine Status in Children With Familial Mediterranean Fever. Arch Rheumatol. 2016 Mar 10;31(2):133-138. doi: 10.5606/ArchRheumatol.2016.5696. eCollection 2016 Jun. [PubMed:29900937 ]
- Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, Smesny S, Sen ZD, Guo AC, Oler E, Tian S, Zheng J, Wishart DS, Liepinsh E, Schioth HB: Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol Rev. 2022 Jul;74(3):506-551. doi: 10.1124/pharmrev.121.000408. [PubMed:35710135 ]
- Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.
| Show more...
---|