Hmdb loader
Show more...Show more...Show more...Show more...Show more...Show more...Show more...
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2023-02-21 17:15:44 UTC
HMDB IDHMDB0001488
Secondary Accession Numbers
  • HMDB01488
Metabolite Identification
Common NameNicotinic acid
DescriptionNicotinic acid, also known as niacin or vitamin B3, is a water-soluble vitamin whose derivatives such as NADH, NAD, NAD+, and NADP play essential roles in energy metabolism in the living cell and DNA repair. The designation vitamin B3 also includes the amide form, nicotinamide or niacinamide. Severe lack of niacin causes the deficiency disease pellagra, whereas a mild deficiency slows down the metabolism decreasing cold tolerance. The recommended daily allowance of niacin is 2-12 mg a day for children, 14 mg a day for women, 16 mg a day for men, and 18 mg a day for pregnant or breast-feeding women. It is found in various animal and plant tissues and has pellagra-curative, vasodilating, and antilipemic properties. The liver can synthesize niacin from the essential amino acid tryptophan, but the synthesis is extremely slow and requires vitamin B6; 60 mg of tryptophan are required to make one milligram of niacin. Bacteria in the gut may also perform the conversion but are inefficient.
Structure
Thumb
Synonyms
Chemical FormulaC6H5NO2
Average Molecular Weight123.1094
Monoisotopic Molecular Weight123.032028409
IUPAC Namepyridine-3-carboxylic acid
Traditional Nameniacin
CAS Registry Number59-67-6
SMILES
OC(=O)C1=CN=CC=C1
InChI Identifier
InChI=1S/C6H5NO2/c8-6(9)5-2-1-3-7-4-5/h1-4H,(H,8,9)
InChI KeyPVNIIMVLHYAWGP-UHFFFAOYSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as pyridinecarboxylic acids. Pyridinecarboxylic acids are compounds containing a pyridine ring bearing a carboxylic acid group.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassPyridines and derivatives
Sub ClassPyridinecarboxylic acids and derivatives
Direct ParentPyridinecarboxylic acids
Alternative Parents
Substituents
  • Pyridine carboxylic acid
  • Heteroaromatic compound
  • Azacycle
  • Monocarboxylic acid or derivatives
  • Carboxylic acid
  • Carboxylic acid derivative
  • Organic nitrogen compound
  • Organic oxygen compound
  • Organopnictogen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Organonitrogen compound
  • Aromatic heteromonocyclic compound
Molecular FrameworkAromatic heteromonocyclic compounds
External Descriptors
Ontology
Physiological effect
Disposition
Biological locationRoute of exposureSource
Process
Role
Industrial applicationBiological role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point236.6 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility18 mg/mLNot Available
LogP0.36SANGSTER (1993)
Experimental Chromatographic Properties

Experimental Collision Cross Sections

Adduct TypeData SourceCCS Value (Å2)Reference
[M-H]-Baker124.49930932474
[M-H]-Astarita_neg119.330932474
[M+H]+Baker128.35330932474
[M-H]-Not Available121.7http://allccs.zhulab.cn/database/detail?ID=AllCCS00000483
[M+H]+Not Available125.0http://allccs.zhulab.cn/database/detail?ID=AllCCS00000483
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
Biospecimen Locations
  • Blood
  • Cerebrospinal Fluid (CSF)
  • Feces
  • Saliva
  • Urine
Tissue Locations
  • Adipose Tissue
  • Epidermis
  • Fibroblasts
  • Intestine
  • Kidney
  • Liver
  • Skeletal Muscle
Pathways
Normal Concentrations
Abnormal Concentrations
Associated Disorders and Diseases
Disease References
Alcoholism
  1. Dastur DK, Santhadevi N, Quadros EV, Avari FC, Wadia NH, Desai MN, Bharucha EP: The B-vitamins in malnutrition with alcoholism. A model of intervitamin relationships. Br J Nutr. 1976 Sep;36(2):143-59. [PubMed:182198 ]
Colorectal cancer
  1. Phua LC, Chue XP, Koh PK, Cheah PY, Ho HK, Chan EC: Non-invasive fecal metabonomic detection of colorectal cancer. Cancer Biol Ther. 2014 Apr;15(4):389-97. doi: 10.4161/cbt.27625. Epub 2014 Jan 14. [PubMed:24424155 ]
  2. Sinha R, Ahn J, Sampson JN, Shi J, Yu G, Xiong X, Hayes RB, Goedert JJ: Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations. PLoS One. 2016 Mar 25;11(3):e0152126. doi: 10.1371/journal.pone.0152126. eCollection 2016. [PubMed:27015276 ]
  3. Brown DG, Rao S, Weir TL, O'Malia J, Bazan M, Brown RJ, Ryan EP: Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016 Jun 6;4:11. doi: 10.1186/s40170-016-0151-y. eCollection 2016. [PubMed:27275383 ]
  4. Goedert JJ, Sampson JN, Moore SC, Xiao Q, Xiong X, Hayes RB, Ahn J, Shi J, Sinha R: Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 2014 Sep;35(9):2089-96. doi: 10.1093/carcin/bgu131. Epub 2014 Jul 18. [PubMed:25037050 ]
Crohn's disease
  1. Kolho KL, Pessia A, Jaakkola T, de Vos WM, Velagapudi V: Faecal and Serum Metabolomics in Paediatric Inflammatory Bowel Disease. J Crohns Colitis. 2017 Mar 1;11(3):321-334. doi: 10.1093/ecco-jcc/jjw158. [PubMed:27609529 ]
  2. Azario I, Pievani A, Del Priore F, Antolini L, Santi L, Corsi A, Cardinale L, Sawamoto K, Kubaski F, Gentner B, Bernardo ME, Valsecchi MG, Riminucci M, Tomatsu S, Aiuti A, Biondi A, Serafini M: Neonatal umbilical cord blood transplantation halts skeletal disease progression in the murine model of MPS-I. Sci Rep. 2017 Aug 25;7(1):9473. doi: 10.1038/s41598-017-09958-9. [PubMed:28842642 ]
Ulcerative colitis
  1. Kolho KL, Pessia A, Jaakkola T, de Vos WM, Velagapudi V: Faecal and Serum Metabolomics in Paediatric Inflammatory Bowel Disease. J Crohns Colitis. 2017 Mar 1;11(3):321-334. doi: 10.1093/ecco-jcc/jjw158. [PubMed:27609529 ]
  2. Azario I, Pievani A, Del Priore F, Antolini L, Santi L, Corsi A, Cardinale L, Sawamoto K, Kubaski F, Gentner B, Bernardo ME, Valsecchi MG, Riminucci M, Tomatsu S, Aiuti A, Biondi A, Serafini M: Neonatal umbilical cord blood transplantation halts skeletal disease progression in the murine model of MPS-I. Sci Rep. 2017 Aug 25;7(1):9473. doi: 10.1038/s41598-017-09958-9. [PubMed:28842642 ]
Attachment loss
  1. Liebsch C, Pitchika V, Pink C, Samietz S, Kastenmuller G, Artati A, Suhre K, Adamski J, Nauck M, Volzke H, Friedrich N, Kocher T, Holtfreter B, Pietzner M: The Saliva Metabolome in Association to Oral Health Status. J Dent Res. 2019 Jun;98(6):642-651. doi: 10.1177/0022034519842853. Epub 2019 Apr 26. [PubMed:31026179 ]
Missing teeth
  1. Liebsch C, Pitchika V, Pink C, Samietz S, Kastenmuller G, Artati A, Suhre K, Adamski J, Nauck M, Volzke H, Friedrich N, Kocher T, Holtfreter B, Pietzner M: The Saliva Metabolome in Association to Oral Health Status. J Dent Res. 2019 Jun;98(6):642-651. doi: 10.1177/0022034519842853. Epub 2019 Apr 26. [PubMed:31026179 ]
Periodontal Probing Depth
  1. Liebsch C, Pitchika V, Pink C, Samietz S, Kastenmuller G, Artati A, Suhre K, Adamski J, Nauck M, Volzke H, Friedrich N, Kocher T, Holtfreter B, Pietzner M: The Saliva Metabolome in Association to Oral Health Status. J Dent Res. 2019 Jun;98(6):642-651. doi: 10.1177/0022034519842853. Epub 2019 Apr 26. [PubMed:31026179 ]
Associated OMIM IDs
DrugBank IDDB00627
Phenol Explorer Compound IDNot Available
FooDB IDFDB001014
KNApSAcK IDC00000208
Chemspider ID913
KEGG Compound IDC00253
BioCyc IDNIACINE
BiGG ID34401
Wikipedia LinkNiacin
METLIN ID6272
PubChem Compound938
PDB IDNot Available
ChEBI ID15940
Food Biomarker OntologyNot Available
VMH IDNAC
MarkerDB IDMDB00000329
Good Scents IDNot Available
References
Synthesis ReferenceMcElvain, S. M.; Goese, M. A. Preparation of nicotinic acid from pyridine. Journal of the American Chemical Society (1941), 63 2283-4.
Material Safety Data Sheet (MSDS)Not Available
General References

Enzymes

General function:
Involved in catalytic activity
Specific function:
Involved in the catabolism of quinolinic acid (QA).
Gene Name:
QPRT
Uniprot ID:
Q15274
Molecular weight:
30815.28
References
  1. Fukuwatari T, Morikawa Y, Hayakawa F, Sugimoto E, Shibata K: Influence of adenine-induced renal failure on tryptophan-niacin metabolism in rats. Biosci Biotechnol Biochem. 2001 Oct;65(10):2154-61. [PubMed:11758903 ]
  2. Shin DH, Oganesyan N, Jancarik J, Yokota H, Kim R, Kim SH: Crystal structure of a nicotinate phosphoribosyltransferase from Thermoplasma acidophilum. J Biol Chem. 2005 May 6;280(18):18326-35. Epub 2005 Mar 6. [PubMed:15753098 ]
  3. Zheng XQ, Hayashibe E, Ashihara H: Changes in trigonelline (N-methylnicotinic acid) content and nicotinic acid metabolism during germination of mungbean (Phaseolus aureus) seeds. J Exp Bot. 2005 Jun;56(416):1615-23. Epub 2005 Apr 18. [PubMed:15837705 ]
General function:
Involved in methyltransferase activity
Specific function:
Catalyzes the N-methylation of nicotinamide and other pyridines to form pyridinium ions. This activity is important for biotransformation of many drugs and xenobiotic compounds.
Gene Name:
NNMT
Uniprot ID:
P40261
Molecular weight:
29573.705
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [PubMed:17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [PubMed:17016423 ]
  3. Riederer M, Erwa W, Zimmermann R, Frank S, Zechner R: Adipose tissue as a source of nicotinamide N-methyltransferase and homocysteine. Atherosclerosis. 2009 Jun;204(2):412-7. doi: 10.1016/j.atherosclerosis.2008.09.015. Epub 2008 Sep 27. [PubMed:18996527 ]
General function:
Involved in monooxygenase activity
Specific function:
Responsible for the metabolism of many drugs and environmental chemicals that it oxidizes. It is involved in the metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic antidepressants.
Gene Name:
CYP2D6
Uniprot ID:
P10635
Molecular weight:
55768.94
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
General function:
Involved in G-protein coupled receptor protein signaling pathway
Specific function:
Receptor for 3-OH-octanoid acid mediates a negative feedback regulation of adipocyte lipolysis to counteract prolipolytic influences under conditions of physiological or pathological increases in beta-oxidation rates. Acts as a low affinity receptor for nicotinic acid. This pharmacological effect requires nicotinic acid doses that are much higher than those provided by a normal diet
Gene Name:
GPR109B
Uniprot ID:
P49019
Molecular weight:
44495.0
References
  1. Tunaru S, Kero J, Schaub A, Wufka C, Blaukat A, Pfeffer K, Offermanns S: PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nat Med. 2003 Mar;9(3):352-5. Epub 2003 Feb 3. [PubMed:12563315 ]
  2. Taggart AK, Kero J, Gan X, Cai TQ, Cheng K, Ippolito M, Ren N, Kaplan R, Wu K, Wu TJ, Jin L, Liaw C, Chen R, Richman J, Connolly D, Offermanns S, Wright SD, Waters MG: (D)-beta-Hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G. J Biol Chem. 2005 Jul 22;280(29):26649-52. Epub 2005 Jun 1. [PubMed:15929991 ]
  3. Zhang Y, Schmidt RJ, Foxworthy P, Emkey R, Oler JK, Large TH, Wang H, Su EW, Mosior MK, Eacho PI, Cao G: Niacin mediates lipolysis in adipose tissue through its G-protein coupled receptor HM74A. Biochem Biophys Res Commun. 2005 Aug 26;334(2):729-32. [PubMed:16018973 ]
  4. Tunaru S, Lattig J, Kero J, Krause G, Offermanns S: Characterization of determinants of ligand binding to the nicotinic acid receptor GPR109A (HM74A/PUMA-G). Mol Pharmacol. 2005 Nov;68(5):1271-80. Epub 2005 Aug 11. [PubMed:16099840 ]
  5. Benyo Z, Gille A, Kero J, Csiky M, Suchankova MC, Nusing RM, Moers A, Pfeffer K, Offermanns S: GPR109A (PUMA-G/HM74A) mediates nicotinic acid-induced flushing. J Clin Invest. 2005 Dec;115(12):3634-40. [PubMed:16322797 ]
  6. Wise A, Foord SM, Fraser NJ, Barnes AA, Elshourbagy N, Eilert M, Ignar DM, Murdock PR, Steplewski K, Green A, Brown AJ, Dowell SJ, Szekeres PG, Hassall DG, Marshall FH, Wilson S, Pike NB: Molecular identification of high and low affinity receptors for nicotinic acid. J Biol Chem. 2003 Mar 14;278(11):9869-74. Epub 2003 Jan 9. [PubMed:12522134 ]
General function:
Involved in G-protein coupled receptor protein signaling pathway
Specific function:
Acts as a high affinity receptor for both nicotinic acid (also known as niacin) and (D)-beta-hydroxybutyrate and mediates increased adiponectin secretion and decreased lipolysis through G(i)-protein-mediated inhibition of adenylyl cyclase. This pharmacological effect requires nicotinic acid doses that are much higher than those provided by a normal diet. Mediates nicotinic acid-induced apoptosis in mature neutrophils. Receptor activation by nicotinic acid results in reduced cAMP levels which may affect activity of cAMP-dependent protein kinase A and phosphorylation of target proteins, leading to neutrophil apoptosis. The rank order of potency for the displacement of nicotinic acid binding is 5- methyl pyrazole-3-carboxylic acid = pyridine-3-acetic acid > acifran > 5-methyl nicotinic acid = acipimox >> nicotinuric acid = nicotinamide
Gene Name:
GPR109A
Uniprot ID:
Q8TDS4
Molecular weight:
41849.1
References
  1. Wise A, Foord SM, Fraser NJ, Barnes AA, Elshourbagy N, Eilert M, Ignar DM, Murdock PR, Steplewski K, Green A, Brown AJ, Dowell SJ, Szekeres PG, Hassall DG, Marshall FH, Wilson S, Pike NB: Molecular identification of high and low affinity receptors for nicotinic acid. J Biol Chem. 2003 Mar 14;278(11):9869-74. Epub 2003 Jan 9. [PubMed:12522134 ]
  2. Soga T, Kamohara M, Takasaki J, Matsumoto S, Saito T, Ohishi T, Hiyama H, Matsuo A, Matsushime H, Furuichi K: Molecular identification of nicotinic acid receptor. Biochem Biophys Res Commun. 2003 Mar 28;303(1):364-9. [PubMed:12646212 ]
  3. Zellner C, Pullinger CR, Aouizerat BE, Frost PH, Kwok PY, Malloy MJ, Kane JP: Variations in human HM74 (GPR109B) and HM74A (GPR109A) niacin receptors. Hum Mutat. 2005 Jan;25(1):18-21. [PubMed:15580557 ]
  4. Zhang Y, Schmidt RJ, Foxworthy P, Emkey R, Oler JK, Large TH, Wang H, Su EW, Mosior MK, Eacho PI, Cao G: Niacin mediates lipolysis in adipose tissue through its G-protein coupled receptor HM74A. Biochem Biophys Res Commun. 2005 Aug 26;334(2):729-32. [PubMed:16018973 ]
  5. Tunaru S, Lattig J, Kero J, Krause G, Offermanns S: Characterization of determinants of ligand binding to the nicotinic acid receptor GPR109A (HM74A/PUMA-G). Mol Pharmacol. 2005 Nov;68(5):1271-80. Epub 2005 Aug 11. [PubMed:16099840 ]
General function:
Involved in purine-nucleoside phosphorylase activity
Specific function:
The purine nucleoside phosphorylases catalyze the phosphorolytic breakdown of the N-glycosidic bond in the beta-(deoxy)ribonucleoside molecules, with the formation of the corresponding free purine bases and pentose-1-phosphate.
Gene Name:
PNP
Uniprot ID:
P00491
Molecular weight:
32117.69
Reactions
Nicotinic acid ribonucleoside + Phosphate → Nicotinic acid + Ribose 1-phosphate + Hydrogen Iondetails
General function:
Involved in nicotinate phosphoribosyltransferase activity
Specific function:
Catalyzes the conversion of nicotinic acid (NA) to NA mononucleotide (NaMN). Essential for NA to increase cellular NAD levels and prevent oxidative stress of the cells.
Gene Name:
NAPRT1
Uniprot ID:
Q6XQN6
Molecular weight:
57577.575
Reactions
Nicotinic acid mononucleotide + Pyrophosphate → Nicotinic acid + Phosphoribosyl pyrophosphatedetails

Transporters

General function:
Involved in transmembrane transport
Specific function:
Proton-linked monocarboxylate transporter. Catalyzes the rapid transport across the plasma membrane of many monocarboxylates such as lactate, pyruvate, branched-chain oxo acids derived from leucine, valine and isoleucine, and the ketone bodies acetoacetate, beta-hydroxybutyrate and acetate
Gene Name:
SLC16A1
Uniprot ID:
P53985
Molecular weight:
53957.7
References
  1. Tamai I, Sai Y, Ono A, Kido Y, Yabuuchi H, Takanaga H, Satoh E, Ogihara T, Amano O, Izeki S, Tsuji A: Immunohistochemical and functional characterization of pH-dependent intestinal absorption of weak organic acids by the monocarboxylic acid transporter MCT1. J Pharm Pharmacol. 1999 Oct;51(10):1113-21. [PubMed:10579682 ]
General function:
Involved in ion transmembrane transporter activity
Specific function:
Sodium-ion dependent, high affinity carnitine transporter. Involved in the active cellular uptake of carnitine. Transports one sodium ion with one molecule of carnitine. Also transports organic cations such as tetraethylammonium (TEA) without the involvement of sodium. Also relative uptake activity ratio of carnitine to TEA is 11.3
Gene Name:
SLC22A5
Uniprot ID:
O76082
Molecular weight:
62751.1
References
  1. Ohashi R, Tamai I, Yabuuchi H, Nezu JI, Oku A, Sai Y, Shimane M, Tsuji A: Na(+)-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance. J Pharmacol Exp Ther. 1999 Nov;291(2):778-84. [PubMed:10525100 ]
General function:
Involved in transporter activity
Specific function:
Mediates the Na(+)-independent transport of organic anions such as taurocholate, the prostaglandins PGD2, PGE1, PGE2, leukotriene C4, thromboxane B2 and iloprost
Gene Name:
SLCO2B1
Uniprot ID:
O94956
Molecular weight:
76697.9
References
  1. Kobayashi D, Nozawa T, Imai K, Nezu J, Tsuji A, Tamai I: Involvement of human organic anion transporting polypeptide OATP-B (SLC21A9) in pH-dependent transport across intestinal apical membrane. J Pharmacol Exp Ther. 2003 Aug;306(2):703-8. Epub 2003 Apr 30. [PubMed:12724351 ]