Hmdb loader
Show more...Show more...Show more...Show more...Show more...Show more...
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2006-08-12 20:15:57 UTC
Update Date2023-02-21 17:16:39 UTC
HMDB IDHMDB0003407
Secondary Accession Numbers
  • HMDB03407
Metabolite Identification
Common NameDiacetyl
DescriptionDiacetyl, also known as 2,3-butadione or dimethylglyoxal, belongs to the class of organic compounds known as alpha-diketones. These are organic compounds containing two ketone groups on two adjacent carbon atoms. Thus, diacetyl is considered to be an oxygenated hydrocarbon lipid molecule. Diacetyl is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Diacetyl exists in all living species, ranging from bacteria to humans. Diacetyl is a strong, sweet, and butter tasting compound. Outside of the human body, diacetyl is found, on average, in the highest concentration in kohlrabis. diacetyl has also been detected, but not quantified in several different foods, such as nances, tartary buckwheats, tamarinds, pineapples, and celeriacs. This could make diacetyl a potential biomarker for the consumption of these foods. Diacetyl is a potentially toxic compound. Diacetyl has been found to be associated with several diseases such as crohn's disease, ulcerative colitis, and nonalcoholic fatty liver disease; also diacetyl has been linked to the inborn metabolic disorders including celiac disease.
Structure
Thumb
Synonyms
Chemical FormulaC4H6O2
Average Molecular Weight86.0892
Monoisotopic Molecular Weight86.036779436
IUPAC Namebutane-2,3-dione
Traditional Namediacetyl
CAS Registry Number431-03-8
SMILES
CC(=O)C(C)=O
InChI Identifier
InChI=1S/C4H6O2/c1-3(5)4(2)6/h1-2H3
InChI KeyQSJXEFYPDANLFS-UHFFFAOYSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as alpha-diketones. These are organic compounds containing two ketone groups on two adjacent carbon atoms.
KingdomOrganic compounds
Super ClassOrganic oxygen compounds
ClassOrganooxygen compounds
Sub ClassCarbonyl compounds
Direct ParentAlpha-diketones
Alternative Parents
Substituents
  • Alpha-diketone
  • Organic oxide
  • Hydrocarbon derivative
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
Physiological effect
Disposition
Biological locationRoute of exposureSource
Process
Role
Physical Properties
StateLiquid
Experimental Molecular Properties
PropertyValueReference
Melting Point-2.4 °CNot Available
Boiling Point87.00 to 88.00 °C. @ 760.00 mm HgThe Good Scents Company Information System
Water Solubility200 mg/mL at 15 °CNot Available
LogP-1.34HANSCH,C ET AL. (1995)
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular Locations
  • Cytoplasm (predicted from logP)
Biospecimen Locations
  • Feces
  • Saliva
Tissue Locations
  • Neuron
  • Ovary
  • Skeletal Muscle
  • Testis
Pathways
Normal Concentrations
Abnormal Concentrations
Associated Disorders and Diseases
Disease References
Ulcerative colitis
  1. Garner CE, Smith S, de Lacy Costello B, White P, Spencer R, Probert CS, Ratcliffe NM: Volatile organic compounds from feces and their potential for diagnosis of gastrointestinal disease. FASEB J. 2007 Jun;21(8):1675-88. Epub 2007 Feb 21. [PubMed:17314143 ]
  2. Ahmed I, Greenwood R, Costello B, Ratcliffe N, Probert CS: Investigation of faecal volatile organic metabolites as novel diagnostic biomarkers in inflammatory bowel disease. Aliment Pharmacol Ther. 2016 Mar;43(5):596-611. doi: 10.1111/apt.13522. Epub 2016 Jan 25. [PubMed:26806034 ]
Nonalcoholic fatty liver disease
  1. Raman M, Ahmed I, Gillevet PM, Probert CS, Ratcliffe NM, Smith S, Greenwood R, Sikaroodi M, Lam V, Crotty P, Bailey J, Myers RP, Rioux KP: Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2013 Jul;11(7):868-75.e1-3. doi: 10.1016/j.cgh.2013.02.015. Epub 2013 Feb 27. [PubMed:23454028 ]
Celiac disease
  1. Di Cagno R, De Angelis M, De Pasquale I, Ndagijimana M, Vernocchi P, Ricciuti P, Gagliardi F, Laghi L, Crecchio C, Guerzoni ME, Gobbetti M, Francavilla R: Duodenal and faecal microbiota of celiac children: molecular, phenotype and metabolome characterization. BMC Microbiol. 2011 Oct 4;11:219. doi: 10.1186/1471-2180-11-219. [PubMed:21970810 ]
Crohn's disease
  1. Ahmed I, Greenwood R, Costello B, Ratcliffe N, Probert CS: Investigation of faecal volatile organic metabolites as novel diagnostic biomarkers in inflammatory bowel disease. Aliment Pharmacol Ther. 2016 Mar;43(5):596-611. doi: 10.1111/apt.13522. Epub 2016 Jan 25. [PubMed:26806034 ]
Associated OMIM IDs
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB011930
KNApSAcK IDC00050437
Chemspider ID630
KEGG Compound IDC00741
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkDiacetyl
METLIN ID6921
PubChem Compound650
PDB IDNot Available
ChEBI ID16583
Food Biomarker OntologyNot Available
VMH IDDIACT
MarkerDB IDMDB00029868
Good Scents IDrw1014611
References
Synthesis ReferenceXu, Ping; Chen, Hong; Du, Yi; Chen, Wanqiu; Xiao, Zijun. Method of preparation diacetyl by oxidization. Faming Zhuanli Shenqing Gongkai Shuomingshu (2005), 6 pp.
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Mehta RC, Hogan TF, Mardmomen S, Ma JK: Chromatographic studies of mitomycin C degradation in albumin microspheres. J Chromatogr. 1988 Sep 9;430(2):341-9. [PubMed:3148622 ]
  2. Hayes BK, Varki A: O-acetylation and de-O-acetylation of sialic acids. Sialic acid esterases of diverse evolutionary origins have serine active sites and essential arginine residues. J Biol Chem. 1989 Nov 15;264(32):19443-8. [PubMed:2509478 ]
  3. Lombardo D, Campese D, Multigner L, Lafont H, De Caro A: On the probable involvement of arginine residues in the bile-salt-binding site of human pancreatic carboxylic ester hydrolase. Eur J Biochem. 1983 Jun 15;133(2):327-33. [PubMed:6852044 ]
  4. Espinosa-Mansilla A, Duran-Meras I, Salinas F: High-performance liquid chromatographic-fluorometric determination of glyoxal, methylglyoxal, and diacetyl in urine by prederivatization to pteridinic rings. Anal Biochem. 1998 Jan 15;255(2):263-73. [PubMed:9451513 ]
  5. Ostap EM: 2,3-Butanedione monoxime (BDM) as a myosin inhibitor. J Muscle Res Cell Motil. 2002;23(4):305-8. [PubMed:12630704 ]
  6. Sokolchik I, Tanabe T, Baldi PF, Sze JY: Polymodal sensory function of the Caenorhabditis elegans OCR-2 channel arises from distinct intrinsic determinants within the protein and is selectively conserved in mammalian TRPV proteins. J Neurosci. 2005 Jan 26;25(4):1015-23. [PubMed:15673683 ]
  7. Sohaskey CD, Barbour AG: Esterases in serum-containing growth media counteract chloramphenicol acetyltransferase activity in vitro. Antimicrob Agents Chemother. 1999 Mar;43(3):655-60. [PubMed:10049283 ]
  8. Peretti E, Karlaganis G, Lauterburg BH: Acetylation of acetylhydrazine, the toxic metabolite of isoniazid, in humans. Inhibition by concomitant administration of isoniazid. J Pharmacol Exp Ther. 1987 Nov;243(2):686-9. [PubMed:3681700 ]