Record Information |
---|
Version | 5.0 |
---|
Status | Expected but not Quantified |
---|
Creation Date | 2007-05-23 10:00:05 UTC |
---|
Update Date | 2022-03-07 02:49:31 UTC |
---|
HMDB ID | HMDB0006459 |
---|
Secondary Accession Numbers | |
---|
Metabolite Identification |
---|
Common Name | Hexacosanoyl-CoA |
---|
Description | Hexacosanoyl-coa, also known as C26:0-CoA, C26:0-coenzyme A, or cerotoyl-CoA is an acyl-CoA or acyl-coenzyme A. More specifically, it is a hexacosanoic acid thioester of coenzyme A. Hexacosanoyl-coa is an acyl-CoA with 26 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3'-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoA's are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Hexacosanoyl-coa is therefore classified as a very long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Hexacosanoyl-coa, being a very long chain acyl-CoA is a substrate for very long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Hexacosanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Hexacosanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Hexacosanoyl-CoA into Hexacosanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Hexacosanoylcarnitine is converted back to Hexacosanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Hexacosanoyl-CoA occurs in four steps. First, since Hexacosanoyl-CoA is a very long chain acyl-CoA it is the substrate for a very long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Hexacosanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol group to a ketone and NADH is produced from NAD+. Finally, Thiolase cleaves between the alpha carbon and ketone to release one molecule of acetyl-CoA and a new acyl-CoA which is now 2 carbons shorter. This four-step process repeats until Hexacosanoyl-CoA has had all its carbons removed from the chain, leaving only acetyl-CoA. Beta oxidation, as well as alpha-oxidation, also occurs in the peroxisome. The peroxisome handles beta oxidation of fatty acids that have more than 20 carbons in their chain because the peroxisome contains very-long-chain Acyl-CoA synthetases and dehydrogenases. The heart primarily metabolizes fat for energy and Acyl-CoA metabolism has been identified as a critical molecule in early-stage heart muscle pump failure. Cellular acyl-CoA content also correlates with insulin resistance, suggesting that it can mediate lipotoxicity in non-adipose tissues. Acyl-CoA: diacylglycerol acyltransferase (DGAT) plays an important role in energy metabolism on account of key enzyme in triglyceride biosynthesis. The study of acyl-CoAs is an active area of research and it is likely that many novel acyl-CoAs will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules. | Read more...
---|
Structure | CCCCCCCCCCCCCCCCCCCCCCCCCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP(O)(=O)OP(O)(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP(O)(O)=O)N1C=NC2=C1N=CN=C2N InChI=1S/C47H86N7O17P3S/c1-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-38(56)75-31-30-49-37(55)28-29-50-45(59)42(58)47(2,3)33-68-74(65,66)71-73(63,64)67-32-36-41(70-72(60,61)62)40(57)46(69-36)54-35-53-39-43(48)51-34-52-44(39)54/h34-36,40-42,46,57-58H,4-33H2,1-3H3,(H,49,55)(H,50,59)(H,63,64)(H,65,66)(H2,48,51,52)(H2,60,61,62)/t36-,40-,41-,42+,46-/m1/s1 |
---|
Synonyms | Value | Source |
---|
C26:0-CoA | ChEBI | C26:0-coenzyme A | ChEBI | Cerotoyl-CoA | ChEBI | Cerotoyl-coenzyme A | ChEBI | Hexacosanoyl-CoA (N-C26:0CoA) | ChEBI | Hexacosanoyl-coenzyme A | ChEBI | CoA(26:0) | HMDB | Hexacosanoyl-CoA | HMDB |
|
---|
Chemical Formula | C47H86N7O17P3S |
---|
Average Molecular Weight | 1146.209 |
---|
Monoisotopic Molecular Weight | 1145.501374587 |
---|
IUPAC Name | {[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-({[({[(3R)-3-[(2-{[2-(hexacosanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}methyl)-4-hydroxyoxolan-3-yl]oxy}phosphonic acid |
---|
Traditional Name | cerotoyl-coa |
---|
CAS Registry Number | 99313-57-2 |
---|
SMILES | CCCCCCCCCCCCCCCCCCCCCCCCCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP(O)(=O)OP(O)(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP(O)(O)=O)N1C=NC2=C1N=CN=C2N |
---|
InChI Identifier | InChI=1S/C47H86N7O17P3S/c1-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-38(56)75-31-30-49-37(55)28-29-50-45(59)42(58)47(2,3)33-68-74(65,66)71-73(63,64)67-32-36-41(70-72(60,61)62)40(57)46(69-36)54-35-53-39-43(48)51-34-52-44(39)54/h34-36,40-42,46,57-58H,4-33H2,1-3H3,(H,49,55)(H,50,59)(H,63,64)(H,65,66)(H2,48,51,52)(H2,60,61,62)/t36-,40-,41-,42+,46-/m1/s1 |
---|
InChI Key | FHLYYFPJDVYWQH-CPIGOPAHSA-N |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as very long-chain fatty acyl coas. These are acyl CoAs where the group acylated to the coenzyme A moiety is a very long aliphatic chain of 22 carbon atoms or more. |
---|
Kingdom | Organic compounds |
---|
Super Class | Lipids and lipid-like molecules |
---|
Class | Fatty Acyls |
---|
Sub Class | Fatty acyl thioesters |
---|
Direct Parent | Very long-chain fatty acyl CoAs |
---|
Alternative Parents | |
---|
Substituents | - Coenzyme a or derivatives
- Purine ribonucleoside 3',5'-bisphosphate
- Purine ribonucleoside bisphosphate
- Purine ribonucleoside diphosphate
- Ribonucleoside 3'-phosphate
- Pentose phosphate
- Pentose-5-phosphate
- Beta amino acid or derivatives
- Glycosyl compound
- N-glycosyl compound
- 6-aminopurine
- Monosaccharide phosphate
- Organic pyrophosphate
- Pentose monosaccharide
- Imidazopyrimidine
- Purine
- Monoalkyl phosphate
- Aminopyrimidine
- Imidolactam
- N-acyl-amine
- N-substituted imidazole
- Organic phosphoric acid derivative
- Monosaccharide
- Pyrimidine
- Alkyl phosphate
- Fatty amide
- Phosphoric acid ester
- Tetrahydrofuran
- Imidazole
- Azole
- Heteroaromatic compound
- Carbothioic s-ester
- Secondary alcohol
- Thiocarboxylic acid ester
- Carboxamide group
- Secondary carboxylic acid amide
- Amino acid or derivatives
- Sulfenyl compound
- Thiocarboxylic acid or derivatives
- Organoheterocyclic compound
- Azacycle
- Oxacycle
- Carboxylic acid derivative
- Organosulfur compound
- Organic oxygen compound
- Hydrocarbon derivative
- Carbonyl group
- Organic nitrogen compound
- Primary amine
- Organopnictogen compound
- Organic oxide
- Organooxygen compound
- Organonitrogen compound
- Alcohol
- Amine
- Aromatic heteropolycyclic compound
|
---|
Molecular Framework | Aromatic heteropolycyclic compounds |
---|
External Descriptors | |
---|
Ontology |
---|
Physiological effect | Not Available |
---|
Disposition | |
---|
Process | |
---|
Role | Not Available |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Molecular Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Experimental Chromatographic Properties | Not Available |
---|
Predicted Molecular Properties | | Show more...
---|
Predicted Chromatographic Properties | Predicted Collision Cross SectionsPredicted Kovats Retention IndicesNot Available | Show more...
---|
Spectra |
---|
| GC-MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
MS | Mass Spectrum (Electron Ionization) | Not Available | 2022-08-06 | Not Available | View Spectrum |
MS/MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Hexacosanoyl-CoA 10V, Positive-QTOF | splash10-002r-1901440100-be2cb6c2191090fe572c | 2016-09-12 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Hexacosanoyl-CoA 20V, Positive-QTOF | splash10-0f79-1901622000-b08e5e670a96cf61ebb9 | 2016-09-12 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Hexacosanoyl-CoA 40V, Positive-QTOF | splash10-0f79-2900310000-1d404b474b20b8fee769 | 2016-09-12 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Hexacosanoyl-CoA 10V, Negative-QTOF | splash10-0059-2902131300-bde43e887248b77390ea | 2016-09-12 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Hexacosanoyl-CoA 20V, Negative-QTOF | splash10-003r-2901110100-45ca204dcebfff70c1b5 | 2016-09-12 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Hexacosanoyl-CoA 40V, Negative-QTOF | splash10-056r-7900000000-2c0e52b0c82b1e816685 | 2016-09-12 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Hexacosanoyl-CoA 10V, Positive-QTOF | splash10-0002-0900000000-1085fa2af20a0dfa0644 | 2021-09-22 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Hexacosanoyl-CoA 20V, Positive-QTOF | splash10-000i-3900000202-40c01c9de3627834fbae | 2021-09-22 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Hexacosanoyl-CoA 40V, Positive-QTOF | splash10-000i-0000149000-6d6f39c024375a1b351f | 2021-09-22 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Hexacosanoyl-CoA 10V, Negative-QTOF | splash10-0006-0900000000-a9918ff61f2464cb8d15 | 2021-09-23 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Hexacosanoyl-CoA 20V, Negative-QTOF | splash10-002f-4901402400-a3ab78dd365d8bf194d5 | 2021-09-23 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Hexacosanoyl-CoA 40V, Negative-QTOF | splash10-004i-6903400300-a03f951b6d8319e16c97 | 2021-09-23 | Wishart Lab | View Spectrum |
NMR SpectraSpectrum Type | Description | Deposition Date | Source | View |
---|
Predicted 1D NMR | 13C NMR Spectrum (1D, 100 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 1000 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 200 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 300 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 400 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 500 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 600 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 700 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 800 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 900 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum |
| Show more...
---|
Biological Properties |
---|
Cellular Locations | - Cytoplasm
- Extracellular
- Membrane
- Mitochondria
- Peroxisome
|
---|
Biospecimen Locations | Not Available |
---|
Tissue Locations | Not Available |
---|
Pathways | |
---|
Normal Concentrations |
---|
| Not Available |
---|
Abnormal Concentrations |
---|
| Not Available |
---|
Associated Disorders and Diseases |
---|
Disease References | None |
---|
Associated OMIM IDs | None |
---|
External Links |
---|
DrugBank ID | Not Available |
---|
Phenol Explorer Compound ID | Not Available |
---|
FooDB ID | FDB023919 |
---|
KNApSAcK ID | Not Available |
---|
Chemspider ID | 23107092 |
---|
KEGG Compound ID | Not Available |
---|
BioCyc ID | CPD1G-277 |
---|
BiGG ID | Not Available |
---|
Wikipedia Link | Not Available |
---|
METLIN ID | Not Available |
---|
PubChem Compound | 25246198 |
---|
PDB ID | Not Available |
---|
ChEBI ID | 52966 |
---|
Food Biomarker Ontology | Not Available |
---|
VMH ID | Not Available |
---|
MarkerDB ID | Not Available |
---|
Good Scents ID | Not Available |
---|
References |
---|
Synthesis Reference | Not Available |
---|
Material Safety Data Sheet (MSDS) | Not Available |
---|
General References | Not Available |
---|