Hmdb loader
You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2021-09-14 15:40:00 UTC
HMDB IDHMDB0000038
Secondary Accession Numbers
  • HMDB00038
Metabolite Identification
Common NameDihydrobiopterin
DescriptionDihydrobiopterin, also known as BH2, 7,8-dihydrobiopterin, L-erythro-7,8-dihydrobiopterin, quinonoid dihydrobiopterin or q-BH2, belongs to the class of organic compounds known as biopterins and derivatives. These are coenzymes containing a 2-amino-pteridine-4-one derivative. Dihydrobiopterin is also classified as a pteridine. Pteridines are aromatic compounds composed of fused pyrimidine and pyrazine rings. Dihydrobiopterin is produced during the synthesis of neurotransmitters L-DOPA, dopamine, norepinephrine and epinephrine. It is restored to the required cofactor tetrahydrobiopterin via the NADPH-dependant reduction of dihydrobiopterin reductase. Dihydrobiopterin can also be converted to tetrahydrobiopterin by nitric oxide synthase (NOS) which is catalyzed by the flavoprotein "diaphorase" activity of NOS. This activity is located on the reductase (C-terminal) domain of NOS, whereas the high affinity tetrahydrobiopterin site involved in NOS activation is located on the oxygenase (N-terminal) domain (PMID: 8626754 ). Sepiapterin reductase (SPR) is another enzyme that plays a role in the production of dihydrobiopterin. SPR catalyzes the reduction of sepiapterin to dihydrobiopterin (BH2), the precursor for tetrahydrobiopterin (BH4). BH4 is a cofactor critical for nitric oxide biosynthesis and alkylglycerol and aromatic amino acid metabolism (PMID: 25550200 ). Dihydrobiopterin is known to be synthesized in several parts of the body, including the pineal gland. Dihydrobiopterin exists in all eukaryotes, ranging from yeast to humans. In humans, dihydrobiopterin is involved in several metabolic disorders including dihydropteridine reductase (DHPR) deficiency. DHPR deficiency is a severe form of hyperphenylalaninemia (HPA) due to impaired regeneration of tetrahydrobiopterin (BH4) leading to decreased levels of neurotransmitters (dopamine, serotonin) and folate in cerebrospinal fluid, and causing neurological symptoms such as psychomotor delay, hypotonia, seizures, abnormal movements, hypersalivation, and swallowing difficulties. Dihydrobiopterin is also associated with another metabolic disorder known as sepiapterin reductase deficiency (SRD). Sepiapterin reductase catalyzes the (NADP-dependent) reduction of carbonyl derivatives, including pteridines, and plays an important role in tetrahydrobiopterin biosynthesis. Low dihydrofolate reductase activity in the brain leads to the accumulation of dihydrobiopterin, which in turn, inhibits tyrosine and tryptophan hydroxylases. This uncouples neuronal nitric oxide synthase, leading to neurotransmitter deficiencies and neuronal cell death. SRD is characterized by low cerebrospinal fluid neurotransmitter levels and the presence of elevated cerebrospinal fluid dihydrobiopterin. SRD is characterized by motor delay, axial hypotonia, language delay, diurnal fluctuation of symptoms, dystonia, weakness, oculogyric crises, dysarthria, parkinsonian signs and hyperreflexia.
Structure
Data?1582752109
Synonyms
ValueSource
7,8-DIHYDROBIOPTERINChEBI
L-Erythro-Q-dihydrobiopterinChEBI
Q-BH2ChEBI
Quinonoid dihydrobiopterinChEBI
L-Erythro-7,8-dihydrobiopterinKegg
L-Erythro-dihydrobiopterinHMDB
7,8-Dihydro-L-biopterinHMDB
BH2HMDB
DihydrobiopterinChEBI
Chemical FormulaC9H13N5O3
Average Molecular Weight239.2312
Monoisotopic Molecular Weight239.101839307
IUPAC Name2-amino-6-[(1R,2S)-1,2-dihydroxypropyl]-1,4,7,8-tetrahydropteridin-4-one
Traditional Namedihydrobiopterin
CAS Registry Number6779-87-9
SMILES
C[C@H](O)[C@H](O)C1=NC2=C(NC1)NC(N)=NC2=O
InChI Identifier
InChI=1S/C9H13N5O3/c1-3(15)6(16)4-2-11-7-5(12-4)8(17)14-9(10)13-7/h3,6,15-16H,2H2,1H3,(H4,10,11,13,14,17)/t3-,6-/m0/s1
InChI KeyFEMXZDUTFRTWPE-DZSWIPIPSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as biopterins and derivatives. These are coenzymes containing a 2-amino-pteridine-4-one derivative. They are mainly synthesized in several parts of the body, including the pineal gland.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassPteridines and derivatives
Sub ClassPterins and derivatives
Direct ParentBiopterins and derivatives
Alternative Parents
Substituents
  • Biopterin
  • Secondary aliphatic/aromatic amine
  • Hydroxypyrimidine
  • Pyrimidine
  • Heteroaromatic compound
  • 1,2-diol
  • Ketimine
  • Secondary alcohol
  • Azacycle
  • Organic 1,3-dipolar compound
  • Propargyl-type 1,3-dipolar organic compound
  • Secondary amine
  • Hydrocarbon derivative
  • Organic oxygen compound
  • Organooxygen compound
  • Organonitrogen compound
  • Organopnictogen compound
  • Imine
  • Organic nitrogen compound
  • Amine
  • Alcohol
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Ontology
Physiological effect

Adverse health effect

Disposition

Biological location

Source

Route of exposure

Process

Naturally occurring process

Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Experimental Spectral Properties

Experimental Collision Cross Sections

PredictorAdduct TypeData SourceCCS Value (Å2)Reference
AllCCS[M+H]+Not Available154.268http://allccs.zhulab.cn/database/detail?ID=AllCCS00000461
Predicted Molecular Properties
PropertyValueSource
Water Solubility1.63 g/LALOGPS
logP10(-1.4) g/LALOGPS
logP10(-2.3) g/LChemAxon
logS10(-2.2) g/LALOGPS
pKa (Strongest Acidic)9.91ChemAxon
pKa (Strongest Basic)0.4ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count8ChemAxon
Hydrogen Donor Count5ChemAxon
Polar Surface Area132.33 ŲChemAxon
Rotatable Bond Count2ChemAxon
Refractivity68.11 m³·mol⁻¹ChemAxon
Polarizability23.11 ųChemAxon
Number of Rings2ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Predicted Spectral Properties

Predicted Kovats Retention Indices

Derivatized

Derivative Name / StructureSMILESKovats RI ValueColumn TypeReference
Dihydrobiopterin,1TMS,#1C[C@H](O[Si](C)(C)C)[C@H](O)C1=NC2=C(NC1)[NH]C(N)=NC2=O2388.3Semi standard non polarhttps://arxiv.org/abs/1905.12712
Dihydrobiopterin,1TMS,#2C[C@H](O)[C@H](O[Si](C)(C)C)C1=NC2=C(NC1)[NH]C(N)=NC2=O2373.3Semi standard non polarhttps://arxiv.org/abs/1905.12712
Dihydrobiopterin,1TMS,#3C[C@H](O)[C@H](O)C1=NC2=C(NC1)[NH]C(N[Si](C)(C)C)=NC2=O2453.6Semi standard non polarhttps://arxiv.org/abs/1905.12712
Dihydrobiopterin,1TMS,#4C[C@H](O)[C@H](O)C1=NC2=C([NH]C(N)=NC2=O)N([Si](C)(C)C)C12307.3Semi standard non polarhttps://arxiv.org/abs/1905.12712
Dihydrobiopterin,1TMS,#5C[C@H](O)[C@H](O)C1=NC2=C(NC1)N([Si](C)(C)C)C(N)=NC2=O2381.1Semi standard non polarhttps://arxiv.org/abs/1905.12712
Dihydrobiopterin,2TMS,#1C[C@H](O[Si](C)(C)C)[C@H](O[Si](C)(C)C)C1=NC2=C(NC1)[NH]C(N)=NC2=O2330.3Semi standard non polarhttps://arxiv.org/abs/1905.12712
Dihydrobiopterin,2TMS,#2C[C@H](O[Si](C)(C)C)[C@H](O)C1=NC2=C(NC1)[NH]C(N[Si](C)(C)C)=NC2=O2348.6Semi standard non polarhttps://arxiv.org/abs/1905.12712
Dihydrobiopterin,2TMS,#3C[C@H](O[Si](C)(C)C)[C@H](O)C1=NC2=C(NC1)N([Si](C)(C)C)C(N)=NC2=O2316.6Semi standard non polarhttps://arxiv.org/abs/1905.12712
Dihydrobiopterin,2TMS,#4C[C@H](O[Si](C)(C)C)[C@H](O)C1=NC2=C([NH]C(N)=NC2=O)N([Si](C)(C)C)C12253.6Semi standard non polarhttps://arxiv.org/abs/1905.12712
Dihydrobiopterin,2TMS,#5C[C@H](O)[C@H](O[Si](C)(C)C)C1=NC2=C(NC1)[NH]C(N[Si](C)(C)C)=NC2=O2337.8Semi standard non polarhttps://arxiv.org/abs/1905.12712
Dihydrobiopterin,2TMS,#6C[C@H](O)[C@H](O[Si](C)(C)C)C1=NC2=C(NC1)N([Si](C)(C)C)C(N)=NC2=O2315.7Semi standard non polarhttps://arxiv.org/abs/1905.12712
Dihydrobiopterin,2TMS,#7C[C@H](O)[C@H](O[Si](C)(C)C)C1=NC2=C([NH]C(N)=NC2=O)N([Si](C)(C)C)C12236.7Semi standard non polarhttps://arxiv.org/abs/1905.12712
Dihydrobiopterin,2TMS,#8C[C@H](O)[C@H](O)C1=NC2=C(NC1)N([Si](C)(C)C)C(N[Si](C)(C)C)=NC2=O2343.2Semi standard non polarhttps://arxiv.org/abs/1905.12712
Dihydrobiopterin,2TMS,#9C[C@H](O)[C@H](O)C1=NC2=C(NC1)[NH]C(N([Si](C)(C)C)[Si](C)(C)C)=NC2=O2407.4Semi standard non polarhttps://arxiv.org/abs/1905.12712
Dihydrobiopterin,2TMS,#10C[C@H](O)[C@H](O)C1=NC2=C([NH]C(N[Si](C)(C)C)=NC2=O)N([Si](C)(C)C)C12313.7Semi standard non polarhttps://arxiv.org/abs/1905.12712
Dihydrobiopterin,2TMS,#11C[C@H](O)[C@H](O)C1=NC2=C(N([Si](C)(C)C)C1)N([Si](C)(C)C)C(N)=NC2=O2288.6Semi standard non polarhttps://arxiv.org/abs/1905.12712
Dihydrobiopterin,1TBDMS,#1C[C@H](O[Si](C)(C)C(C)(C)C)[C@H](O)C1=NC2=C(NC1)[NH]C(N)=NC2=O2616.6Semi standard non polarhttps://arxiv.org/abs/1905.12712
Dihydrobiopterin,1TBDMS,#2C[C@H](O)[C@H](O[Si](C)(C)C(C)(C)C)C1=NC2=C(NC1)[NH]C(N)=NC2=O2607.2Semi standard non polarhttps://arxiv.org/abs/1905.12712
Dihydrobiopterin,1TBDMS,#3C[C@H](O)[C@H](O)C1=NC2=C(NC1)[NH]C(N[Si](C)(C)C(C)(C)C)=NC2=O2636.4Semi standard non polarhttps://arxiv.org/abs/1905.12712
Dihydrobiopterin,1TBDMS,#4C[C@H](O)[C@H](O)C1=NC2=C([NH]C(N)=NC2=O)N([Si](C)(C)C(C)(C)C)C12540.5Semi standard non polarhttps://arxiv.org/abs/1905.12712
Dihydrobiopterin,1TBDMS,#5C[C@H](O)[C@H](O)C1=NC2=C(NC1)N([Si](C)(C)C(C)(C)C)C(N)=NC2=O2601.3Semi standard non polarhttps://arxiv.org/abs/1905.12712
Dihydrobiopterin,2TBDMS,#1C[C@H](O[Si](C)(C)C(C)(C)C)[C@H](O[Si](C)(C)C(C)(C)C)C1=NC2=C(NC1)[NH]C(N)=NC2=O2760.9Semi standard non polarhttps://arxiv.org/abs/1905.12712
Dihydrobiopterin,2TBDMS,#2C[C@H](O[Si](C)(C)C(C)(C)C)[C@H](O)C1=NC2=C(NC1)[NH]C(N[Si](C)(C)C(C)(C)C)=NC2=O2756.2Semi standard non polarhttps://arxiv.org/abs/1905.12712
Dihydrobiopterin,2TBDMS,#3C[C@H](O[Si](C)(C)C(C)(C)C)[C@H](O)C1=NC2=C(NC1)N([Si](C)(C)C(C)(C)C)C(N)=NC2=O2762.5Semi standard non polarhttps://arxiv.org/abs/1905.12712
Dihydrobiopterin,2TBDMS,#4C[C@H](O[Si](C)(C)C(C)(C)C)[C@H](O)C1=NC2=C([NH]C(N)=NC2=O)N([Si](C)(C)C(C)(C)C)C12669.0Semi standard non polarhttps://arxiv.org/abs/1905.12712
Dihydrobiopterin,2TBDMS,#5C[C@H](O)[C@H](O[Si](C)(C)C(C)(C)C)C1=NC2=C(NC1)[NH]C(N[Si](C)(C)C(C)(C)C)=NC2=O2753.5Semi standard non polarhttps://arxiv.org/abs/1905.12712
Dihydrobiopterin,2TBDMS,#6C[C@H](O)[C@H](O[Si](C)(C)C(C)(C)C)C1=NC2=C(NC1)N([Si](C)(C)C(C)(C)C)C(N)=NC2=O2751.6Semi standard non polarhttps://arxiv.org/abs/1905.12712
Dihydrobiopterin,2TBDMS,#7C[C@H](O)[C@H](O[Si](C)(C)C(C)(C)C)C1=NC2=C([NH]C(N)=NC2=O)N([Si](C)(C)C(C)(C)C)C12656.8Semi standard non polarhttps://arxiv.org/abs/1905.12712
Dihydrobiopterin,2TBDMS,#8C[C@H](O)[C@H](O)C1=NC2=C(NC1)N([Si](C)(C)C(C)(C)C)C(N[Si](C)(C)C(C)(C)C)=NC2=O2786.6Semi standard non polarhttps://arxiv.org/abs/1905.12712
Dihydrobiopterin,2TBDMS,#9C[C@H](O)[C@H](O)C1=NC2=C(NC1)[NH]C(N([Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C)=NC2=O2785.3Semi standard non polarhttps://arxiv.org/abs/1905.12712
Dihydrobiopterin,2TBDMS,#10C[C@H](O)[C@H](O)C1=NC2=C([NH]C(N[Si](C)(C)C(C)(C)C)=NC2=O)N([Si](C)(C)C(C)(C)C)C12711.2Semi standard non polarhttps://arxiv.org/abs/1905.12712
Dihydrobiopterin,2TBDMS,#11C[C@H](O)[C@H](O)C1=NC2=C(N([Si](C)(C)C(C)(C)C)C1)N([Si](C)(C)C(C)(C)C)C(N)=NC2=O2708.9Semi standard non polarhttps://arxiv.org/abs/1905.12712
Spectra

GC-MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted GC-MSPredicted GC-MS Spectrum - Dihydrobiopterin GC-MS (Non-derivatized) - 70eV, Positivesplash10-01ox-8930000000-836b0568b603906f549d2017-08-28Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - Dihydrobiopterin GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12Wishart LabView Spectrum

MS/MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Experimental LC-MS/MSLC-MS/MS Spectrum - Dihydrobiopterin Quattro_QQQ 10V, Positive-QTOF (Annotated)splash10-000i-0190000000-b23b7cc50e3b7bda01be2020-02-10HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Dihydrobiopterin Quattro_QQQ 25V, Positive-QTOF (Annotated)splash10-0092-3900000000-a352eac2af4690fb47f12020-02-10HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Dihydrobiopterin Quattro_QQQ 40V, Positive-QTOF (Annotated)splash10-014i-9400000000-054ffe617ee964dda2032020-02-10HMDB team, MONAView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Dihydrobiopterin 10V, Positive-QTOFsplash10-006x-0190000000-d7c2e475a8d3f7b4994f2017-07-25Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Dihydrobiopterin 20V, Positive-QTOFsplash10-022c-0890000000-00cee7b9f9a6dd10e9842017-07-25Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Dihydrobiopterin 40V, Positive-QTOFsplash10-03k9-1900000000-0095b515a0b62e12a2a22017-07-25Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Dihydrobiopterin 10V, Negative-QTOFsplash10-000i-0390000000-4091667943de90fcbcad2017-07-26Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Dihydrobiopterin 20V, Negative-QTOFsplash10-0006-1930000000-034022c1ca4ad39363fd2017-07-26Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Dihydrobiopterin 40V, Negative-QTOFsplash10-0006-9400000000-4251e4ef4f844b6962ad2017-07-26Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Dihydrobiopterin 10V, Negative-QTOFsplash10-0006-0900000000-4f635c9ed114df17ae1f2021-09-23Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Dihydrobiopterin 20V, Negative-QTOFsplash10-002f-0900000000-c1bc8529741d404ca90e2021-09-23Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Dihydrobiopterin 40V, Negative-QTOFsplash10-0006-9500000000-3171f93c753525fc16a92021-09-23Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Dihydrobiopterin 10V, Positive-QTOFsplash10-0006-0090000000-3376871b80c100bbe6d82021-09-24Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Dihydrobiopterin 20V, Positive-QTOFsplash10-0g4l-0490000000-cb426b9d7058899336012021-09-24Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Dihydrobiopterin 40V, Positive-QTOFsplash10-0002-3900000000-7ba50f111b0f14f6fbdc2021-09-24Wishart LabView Spectrum

NMR Spectra

Spectrum TypeDescriptionDeposition DateSourceView
Predicted 1D NMR13C NMR Spectrum (1D, 100 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 100 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 1000 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 1000 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 200 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 200 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 300 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 300 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 400 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 400 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 500 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 500 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 600 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 600 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 700 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 700 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 800 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 800 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 900 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 900 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Experimental 1D NMR1H NMR Spectrum (1D, 600 MHz, DMSO, experimental)2021-10-10Wishart LabView Spectrum
Experimental 1D NMR1H NMR Spectrum (1D, 600 MHz, DMSO, experimental)2021-10-10Wishart LabView Spectrum
Experimental 2D NMR[1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, 100%_DMSO, experimental)2020-02-10Wishart LabView Spectrum
Biological Properties
Cellular Locations
  • Cytoplasm
Biospecimen Locations
  • Blood
  • Cerebrospinal Fluid (CSF)
  • Feces
  • Saliva
Tissue LocationsNot Available
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified0.006 +/- 0.0003 uMAdult (>18 years old)BothNormal details
Cerebrospinal Fluid (CSF)Detected and Quantified0.0004-0.014 uMAdult (>18 years old)BothNormal details
SalivaDetected and Quantified8.25 +/- 8.34 uMAdult (>18 years old)Female
Normal
    • Sugimoto et al. (...
details
SalivaDetected and Quantified1.22 +/- 3.60 uMAdult (>18 years old)Not Specified
Normal
    • Sugimoto et al. (...
details
SalivaDetected and Quantified10.8 +/- 14.7 uMAdult (>18 years old)Not Specified
Normal
    • Sugimoto et al. (...
details
SalivaDetected and Quantified23.6 +/- 28.7 uMAdult (>18 years old)Both
Normal
    • Sugimoto et al. (...
details
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified0.0635 +/- 0.0041 uMAdult (>18 years old)Both
Kidney disease
details
FecesDetected but not QuantifiedNot QuantifiedChildren (1-13 years old)BothEnthesitis-related arthritis details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothColorectal Cancer details
Associated Disorders and Diseases
Disease References
Kidney disease
  1. Yokoyama K, Tajima M, Yoshida H, Nakayama M, Tokutome G, Sakagami H, Hosoya T: Plasma pteridine concentrations in patients with chronic renal failure. Nephrol Dial Transplant. 2002 Jun;17(6):1032-6. [PubMed:12032193 ]
Colorectal cancer
  1. Brown DG, Rao S, Weir TL, O'Malia J, Bazan M, Brown RJ, Ryan EP: Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016 Jun 6;4:11. doi: 10.1186/s40170-016-0151-y. eCollection 2016. [PubMed:27275383 ]
Associated OMIM IDs
DrugBank IDDB04400
Phenol Explorer Compound IDNot Available
FooDB IDFDB021884
KNApSAcK IDNot Available
Chemspider ID106382
KEGG Compound IDC02953
BioCyc IDCPD-15159
BiGG IDNot Available
Wikipedia LinkDihydrobiopterin
METLIN IDNot Available
PubChem Compound119055
PDB IDNot Available
ChEBI ID43029
Food Biomarker OntologyNot Available
VMH IDCE2705
MarkerDB IDMDB00000019
Good Scents IDNot Available
References
Synthesis ReferenceGal E M. Synthesis and quantitative aspects of dihydrobiopterin control of cerebral serotonin levels. Advances in experimental medicine and biology (1981), 133 197-206.
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Bonafe L, Thony B, Penzien JM, Czarnecki B, Blau N: Mutations in the sepiapterin reductase gene cause a novel tetrahydrobiopterin-dependent monoamine-neurotransmitter deficiency without hyperphenylalaninemia. Am J Hum Genet. 2001 Aug;69(2):269-77. Epub 2001 Jul 6. [PubMed:11443547 ]
  2. Goodwill KE, Sabatier C, Stevens RC: Crystal structure of tyrosine hydroxylase with bound cofactor analogue and iron at 2.3 A resolution: self-hydroxylation of Phe300 and the pterin-binding site. Biochemistry. 1998 Sep 29;37(39):13437-45. [PubMed:9753429 ]
  3. Leeming RJ, Blair JA, Melikian V, O'Gorman DJ: Biopterin derivatives in human body fluids and tissues. J Clin Pathol. 1976 May;29(5):444-51. [PubMed:932231 ]
  4. Witteveen CF, Giovanelli J, Kaufman S: Reduction of quinonoid dihydrobiopterin to tetrahydrobiopterin by nitric oxide synthase. J Biol Chem. 1996 Feb 23;271(8):4143-7. [PubMed:8626754 ]
  5. Niederwieser A, Curtius HC, Bettoni O, Bieri J, Schircks B, Viscontini M, Schaub J: Atypical phenylketonuria caused by 7, 8-dihydrobiopterin synthetase deficiency. Lancet. 1979 Jan 20;1(8108):131-3. [PubMed:84153 ]
  6. Topal G, Brunet A, Millanvoye E, Boucher JL, Rendu F, Devynck MA, David-Dufilho M: Homocysteine induces oxidative stress by uncoupling of NO synthase activity through reduction of tetrahydrobiopterin. Free Radic Biol Med. 2004 Jun 15;36(12):1532-41. [PubMed:15182855 ]
  7. Yokoyama K, Tajima M, Yoshida H, Nakayama M, Tokutome G, Sakagami H, Hosoya T: Plasma pteridine concentrations in patients with chronic renal failure. Nephrol Dial Transplant. 2002 Jun;17(6):1032-6. [PubMed:12032193 ]
  8. Hagedoorn PL, Schmidt PP, Andersson KK, Hagen WR, Flatmark T, Martinez A: The effect of substrate, dihydrobiopterin, and dopamine on the EPR spectroscopic properties and the midpoint potential of the catalytic iron in recombinant human phenylalanine hydroxylase. J Biol Chem. 2001 Jun 22;276(25):22850-6. Epub 2001 Apr 11. [PubMed:11301319 ]
  9. Howells DW, Hyland K: Direct analysis of tetrahydrobiopterin in cerebrospinal fluid by high-performance liquid chromatography with redox electrochemistry: prevention of autoxidation during storage and analysis. Clin Chim Acta. 1987 Jul 30;167(1):23-30. [PubMed:3665086 ]
  10. Shinozaki K, Hirayama A, Nishio Y, Yoshida Y, Ohtani T, Okamura T, Masada M, Kikkawa R, Kodama K, Kashiwagi A: Coronary endothelial dysfunction in the insulin-resistant state is linked to abnormal pteridine metabolism and vascular oxidative stress. J Am Coll Cardiol. 2001 Dec;38(7):1821-8. [PubMed:11738280 ]
  11. Yang S, Jan YH, Mishin V, Richardson JR, Hossain MM, Heindel ND, Heck DE, Laskin DL, Laskin JD: Sulfa drugs inhibit sepiapterin reduction and chemical redox cycling by sepiapterin reductase. J Pharmacol Exp Ther. 2015 Mar;352(3):529-40. doi: 10.1124/jpet.114.221572. Epub 2014 Dec 30. [PubMed:25550200 ]

Only showing the first 10 proteins. There are 11 proteins in total.

Enzymes

General function:
Involved in oxidoreductase activity
Specific function:
This is a copper-containing oxidase that functions in the formation of pigments such as melanins and other polyphenolic compounds. Catalyzes the rate-limiting conversions of tyrosine to DOPA, DOPA to DOPA-quinone and possibly 5,6-dihydroxyindole to indole-5,6 quinone.
Gene Name:
TYR
Uniprot ID:
P14679
Molecular weight:
60392.69
References
  1. Wood JM, Chavan B, Hafeez I, Schallreuter KU: Regulation of tyrosinase by tetrahydropteridines and H2O2. Biochem Biophys Res Commun. 2004 Dec 24;325(4):1412-7. [PubMed:15555584 ]
General function:
Involved in monooxygenase activity
Specific function:
Plays an important role in the physiology of adrenergic neurons.
Gene Name:
TH
Uniprot ID:
P07101
Molecular weight:
55611.26
References
  1. Goodwill KE, Sabatier C, Stevens RC: Crystal structure of tyrosine hydroxylase with bound cofactor analogue and iron at 2.3 A resolution: self-hydroxylation of Phe300 and the pterin-binding site. Biochemistry. 1998 Sep 29;37(39):13437-45. [PubMed:9753429 ]
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the final one or two reductions in tetra-hydrobiopterin biosynthesis to form 5,6,7,8-tetrahydrobiopterin.
Gene Name:
SPR
Uniprot ID:
P35270
Molecular weight:
28048.13
Reactions
Dihydrobiopterin + NADP → Sepiapterin + NADPHdetails
References
  1. Curtius HC, Heintel D, Ghisla S, Kuster T, Leimbacher W, Niederwieser A: Tetrahydrobiopterin biosynthesis. Studies with specifically labeled (2H)NAD(P)H and 2H2O and of the enzymes involved. Eur J Biochem. 1985 May 2;148(3):413-9. [PubMed:3888618 ]
General function:
Involved in amino acid binding
Specific function:
Not Available
Gene Name:
TPH1
Uniprot ID:
P17752
Molecular weight:
50984.725
References
  1. Wang L, Erlandsen H, Haavik J, Knappskog PM, Stevens RC: Three-dimensional structure of human tryptophan hydroxylase and its implications for the biosynthesis of the neurotransmitters serotonin and melatonin. Biochemistry. 2002 Oct 22;41(42):12569-74. [PubMed:12379098 ]
General function:
Involved in oxidoreductase activity
Specific function:
The product of this enzyme, tetrahydrobiopterin (BH-4), is an essential cofactor for phenylalanine, tyrosine, and tryptophan hydroxylases.
Gene Name:
QDPR
Uniprot ID:
P09417
Molecular weight:
25789.295
General function:
Involved in dihydrofolate reductase activity
Specific function:
Key enzyme in folate metabolism. Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. Binds its own mRNA and that of DHFRL1.
Gene Name:
DHFR
Uniprot ID:
P00374
Molecular weight:
21452.61
References
  1. Bowers SW, Duch DS: In vivo measurement of dihydrofolate reductase and its inhibition by antifolates. Anal Biochem. 1988 Jul;172(1):169-75. [PubMed:3189762 ]
General function:
Involved in oxidoreductase activity
Specific function:
Produces nitric oxide (NO) which is a messenger molecule with diverse functions throughout the body. In the brain and peripheral nervous system, NO displays many properties of a neurotransmitter. Probably has nitrosylase activity and mediates cysteine S-nitrosylation of cytoplasmic target proteins such SRR.
Gene Name:
NOS1
Uniprot ID:
P29475
Molecular weight:
160969.095
References
  1. Li H, Igarashi J, Jamal J, Yang W, Poulos TL: Structural studies of constitutive nitric oxide synthases with diatomic ligands bound. J Biol Inorg Chem. 2006 Sep;11(6):753-68. Epub 2006 Jun 28. [PubMed:16804678 ]
General function:
Involved in oxidoreductase activity
Specific function:
Produces nitric oxide (NO) which is implicated in vascular smooth muscle relaxation through a cGMP-mediated signal transduction pathway. NO mediates vascular endothelial growth factor (VEGF)-induced angiogenesis in coronary vessels and promotes blood clotting through the activation of platelets. Isoform eNOS13C: Lacks eNOS activity, dominant-negative form that may down-regulate eNOS activity by forming heterodimers with isoform 1.
Gene Name:
NOS3
Uniprot ID:
P29474
Molecular weight:
133273.59
References
  1. Lowe ER, Everett AC, Lee AJ, Lau M, Dunbar AY, Berka V, Tsai AL, Osawa Y: Time-dependent inhibition and tetrahydrobiopterin depletion of endothelial nitric-oxide synthase caused by cigarettes. Drug Metab Dispos. 2005 Jan;33(1):131-8. Epub 2004 Oct 6. [PubMed:15470159 ]
General function:
Involved in 4-alpha-hydroxytetrahydrobiopterin dehydratase activity
Specific function:
Involved in tetrahydrobiopterin biosynthesis. Seems to both prevent the formation of 7-pterins and accelerate the formation of quinonoid-BH2. Coactivator for HNF1A-dependent transcription. Regulates the dimerization of homeodomain protein HNF1A and enhances its transcriptional activity.
Gene Name:
PCBD1
Uniprot ID:
P61457
Molecular weight:
11999.515
Reactions
(6R)-6-(L-erythro-1,2-dihydroxypropyl)-5,6,7,8-tetrahydro-4a-hydroxypterin → Dihydrobiopterin + Waterdetails
General function:
Involved in 4-alpha-hydroxytetrahydrobiopterin dehydratase activity
Specific function:
Involved in tetrahydrobiopterin biosynthesis. Seems to both prevent the formation of 7-pterins and accelerate the formation of quinonoid-BH2 (By similarity). Regulates the dimerization of homeodomain protein HNF-1-alpha and enhances its transcriptional activity.
Gene Name:
PCBD2
Uniprot ID:
Q9H0N5
Molecular weight:
14365.325
Reactions
(6R)-6-(L-erythro-1,2-dihydroxypropyl)-5,6,7,8-tetrahydro-4a-hydroxypterin → Dihydrobiopterin + Waterdetails

Only showing the first 10 proteins. There are 11 proteins in total.