You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
StatusDetected and Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2020-11-09 23:15:08 UTC
Secondary Accession Numbers
  • HMDB0004011
  • HMDB00896
  • HMDB04011
Metabolite Identification
Common NameTaurodeoxycholic acid
DescriptionTaurodeoxycholic acid is a bile salt formed in the liver by conjugation of deoxycholate with taurine, usually as the sodium salt. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487 , 16037564 , 12576301 , 11907135 ). Taurodeoxycholic acid can be found in Escherichia (PMID: 30736766 ).
Acid, taurodeoxycholicHMDB
Deoxycholate, taurineHMDB
Sodium taurodeoxycholateHMDB
Taurine deoxycholateHMDB
Taurodeoxycholate, sodiumHMDB
Deoxytaurocholic acidHMDB
Sodium taurodeoxylateHMDB
Taurodeoxycholic acid sodium saltHMDB
Taurodeoxycholic acid sodium salt hydrateHMDB
Taurodesoxycholic acidHMDB
Chemical FormulaC26H45NO6S
Average Molecular Weight499.704
Monoisotopic Molecular Weight499.296758867
IUPAC Name2-[(4R)-4-[(1S,2S,5R,7R,10R,11S,14R,15R,16S)-5,16-dihydroxy-2,15-dimethyltetracyclo[^{2,7}.0^{11,15}]heptadecan-14-yl]pentanamido]ethane-1-sulfonic acid
Traditional Name2-[(4R)-4-[(1S,2S,5R,7R,10R,11S,14R,15R,16S)-5,16-dihydroxy-2,15-dimethyltetracyclo[^{2,7}.0^{11,15}]heptadecan-14-yl]pentanamido]ethanesulfonic acid
CAS Registry Number516-50-7
InChI Identifier
Chemical Taxonomy
Description belongs to the class of organic compounds known as taurinated bile acids and derivatives. These are bile acid derivatives containing a taurine conjugated to the bile acid moiety.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassSteroids and steroid derivatives
Sub ClassBile acids, alcohols and derivatives
Direct ParentTaurinated bile acids and derivatives
Alternative Parents
  • Taurinated bile acid
  • Dihydroxy bile acid, alcohol, or derivatives
  • Hydroxy bile acid, alcohol, or derivatives
  • 3-hydroxysteroid
  • 12-hydroxysteroid
  • 3-alpha-hydroxysteroid
  • Hydroxysteroid
  • Fatty amide
  • Fatty acyl
  • N-acyl-amine
  • Cyclic alcohol
  • Alkanesulfonic acid
  • Sulfonyl
  • Organic sulfonic acid or derivatives
  • Organosulfonic acid or derivatives
  • Organosulfonic acid
  • Secondary alcohol
  • Secondary carboxylic acid amide
  • Carboxamide group
  • Carboxylic acid derivative
  • Organooxygen compound
  • Organonitrogen compound
  • Organic nitrogen compound
  • Alcohol
  • Hydrocarbon derivative
  • Organic oxide
  • Organopnictogen compound
  • Organic oxygen compound
  • Organosulfur compound
  • Carbonyl group
  • Aliphatic homopolycyclic compound
Molecular FrameworkAliphatic homopolycyclic compounds
External Descriptors

Route of exposure:


Biological location:


Naturally occurring process:


Biological role:

Industrial application:

Physical Properties
Experimental Properties
Melting Point204 - 208 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility41 mg/mLNot Available
LogPNot AvailableNot Available
Predicted Properties
Water Solubility0.0078 g/LALOGPS
pKa (Strongest Acidic)-0.75ChemAxon
pKa (Strongest Basic)-0.2ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count6ChemAxon
Hydrogen Donor Count4ChemAxon
Polar Surface Area123.93 ŲChemAxon
Rotatable Bond Count7ChemAxon
Refractivity130.6 m³·mol⁻¹ChemAxon
Polarizability56.55 ųChemAxon
Number of Rings4ChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleYesChemAxon
Spectrum TypeDescriptionSplash KeyView
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-00lu-0111900000-a90e31e3c4cf2f0c6f3aSpectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (2 TMS) - 70eV, Positivesplash10-004i-4201229000-01b8d5e2d286a6e403aaSpectrum
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-0ikd-0047930000-8f9f65d8c1d3c8253501Spectrum
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-03g0-0950300000-d3a559bd8c5ccd049d7bSpectrum
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-001i-9545740000-d9a7750b1b579bd2bb05Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-IT , negativesplash10-0a4i-0009500000-11f56619a58a7f9fe2dfSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-01si-0302920000-c2629184642c876303acSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0a6r-1904400000-52b97ee82fecb26d2df7Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-004l-8906300000-1c0dd8ea92d737243ce2Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-000t-2001900000-5090bd6cae3b061c80e4Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0089-7504900000-0d93eba8b9f15618357fSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-001l-9202000000-2e68ed7e43eb97ec4ad8Spectrum
1D NMR1H NMR SpectrumNot AvailableSpectrum
2D NMR[1H,13C] 2D NMR SpectrumNot AvailableSpectrum
Biological Properties
Cellular Locations
  • Extracellular
Biospecimen Locations
  • Bile
  • Blood
  • Feces
  • Urine
Tissue Locations
  • Intestine
Normal Concentrations
BileDetected and Quantified> 0.01 uMAdult (>18 years old)BothNormal details
BloodDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothNormal details
BloodDetected and Quantified0.062 (0.000-0.177) uMAdult (>18 years old)Not SpecifiedNormal details
FecesDetected and Quantified4.32 +/- 5.81 nmol/g dry fecesNot SpecifiedNot Specified
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
UrineDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothNormal details
Abnormal Concentrations
BloodDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Hepatocellular carcinoma
BloodDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Liver Cirrhosis
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Metastatic melanoma
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothColorectal Cancer details
Associated Disorders and Diseases
Disease References
Hepatocellular carcinoma
  1. Ressom HW, Xiao JF, Tuli L, Varghese RS, Zhou B, Tsai TH, Ranjbar MR, Zhao Y, Wang J, Di Poto C, Cheema AK, Tadesse MG, Goldman R, Shetty K: Utilization of metabolomics to identify serum biomarkers for hepatocellular carcinoma in patients with liver cirrhosis. Anal Chim Acta. 2012 Sep 19;743:90-100. doi: 10.1016/j.aca.2012.07.013. Epub 2012 Jul 20. [PubMed:22882828 ]
  1. Ressom HW, Xiao JF, Tuli L, Varghese RS, Zhou B, Tsai TH, Ranjbar MR, Zhao Y, Wang J, Di Poto C, Cheema AK, Tadesse MG, Goldman R, Shetty K: Utilization of metabolomics to identify serum biomarkers for hepatocellular carcinoma in patients with liver cirrhosis. Anal Chim Acta. 2012 Sep 19;743:90-100. doi: 10.1016/j.aca.2012.07.013. Epub 2012 Jul 20. [PubMed:22882828 ]
Colorectal cancer
  1. Brown DG, Rao S, Weir TL, O'Malia J, Bazan M, Brown RJ, Ryan EP: Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016 Jun 6;4:11. doi: 10.1186/s40170-016-0151-y. eCollection 2016. [PubMed:27275383 ]
Metastatic melanoma
  1. Frankel AE, Coughlin LA, Kim J, Froehlich TW, Xie Y, Frenkel EP, Koh AY: Metagenomic Shotgun Sequencing and Unbiased Metabolomic Profiling Identify Specific Human Gut Microbiota and Metabolites Associated with Immune Checkpoint Therapy Efficacy in Melanoma Patients. Neoplasia. 2017 Oct;19(10):848-855. doi: 10.1016/j.neo.2017.08.004. Epub 2017 Sep 15. [PubMed:28923537 ]
Associated OMIM IDs
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB022304
KNApSAcK IDNot Available
Chemspider ID2015539
KEGG Compound IDC05463
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkTaurodeoxycholic_acid
PubChem Compound2733768
PDB IDNot Available
ChEBI ID9410
Food Biomarker OntologyNot Available
MarkerDB ID
Synthesis ReferenceParenti, Massimo. Preparation of tauroursodesoxycholic acid dihydrate. Eur. Pat. Appl. (1990), 3 pp. CODEN: EPXXDW EP 400695 A2 19901205 CAN 114:82269 AN 1991:82269
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Bloch CA, Watkins JB: Determination of conjugated bile acids in human bile and duodenal fluid by reverse-phase high-performance liquid chromatography. J Lipid Res. 1978 May;19(4):510-3. [PubMed:659989 ]
  2. Foley DP, Collins BR, Magee JC, Platt JL, Katz E, Harland RC, Meyers WC, Chari RS: Bile acids in xenogeneic ex-vivo liver perfusion: function of xenoperfused livers and compatibility with human bile salts and porcine livers. Transplantation. 2000 Jan 27;69(2):242-8. [PubMed:10670634 ]
  3. Bretagne JF, Vidon N, L'Hirondel C, Bernier JJ: Increased cell loss in the human jejunum induced by laxatives (ricinoleic acid, dioctyl sodium sulphosuccinate, magnesium sulphate, bile salts). Gut. 1981 Apr;22(4):264-9. [PubMed:6165655 ]
  4. Leveau P, Wang X, Sun Z, Borjesson A, Andersson E, Andersson R: Severity of pancreatitis-associated gut barrier dysfunction is reduced following treatment with the PAF inhibitor lexipafant. Biochem Pharmacol. 2005 May 1;69(9):1325-31. [PubMed:15826603 ]
  5. Burkard I, von Eckardstein A, Rentsch KM: Differentiated quantification of human bile acids in serum by high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Nov 5;826(1-2):147-59. Epub 2005 Sep 22. [PubMed:16182619 ]
  6. Lim HJ, Kim SY, Lee WK: Isolation of cholesterol-lowering lactic acid bacteria from human intestine for probiotic use. J Vet Sci. 2004 Dec;5(4):391-5. [PubMed:15613825 ]
  7. Muhlbauer M, Allard B, Bosserhoff AK, Kiessling S, Herfarth H, Rogler G, Scholmerich J, Jobin C, Hellerbrand C: Differential effects of deoxycholic acid and taurodeoxycholic acid on NF-kappa B signal transduction and IL-8 gene expression in colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2004 Jun;286(6):G1000-8. Epub 2004 Jan 15. [PubMed:14726307 ]
  8. Pouwels MJ, Tack CJ, Span PN, Olthaar AJ, Sweep CG, Huvers FC, Lutterman JA, Hermus AR: Role of hexosamines in insulin resistance and nutrient sensing in human adipose and muscle tissue. J Clin Endocrinol Metab. 2004 Oct;89(10):5132-7. [PubMed:15472217 ]
  9. Elkins CA, Mullis LB: Bile-mediated aminoglycoside sensitivity in Lactobacillus species likely results from increased membrane permeability attributable to cholic acid. Appl Environ Microbiol. 2004 Dec;70(12):7200-9. [PubMed:15574918 ]
  10. Aubert E, Sbarra V, Le Petit-Thevenin J, Valette A, Lombardo D: Site-directed mutagenesis of the basic N-terminal cluster of pancreatic bile salt-dependent lipase. Functional significance. J Biol Chem. 2002 Sep 20;277(38):34987-96. Epub 2002 Jul 10. [PubMed:12110666 ]
  11. Xie Q, Li GM, Zhou XQ, Liao D, Yu H, Guo Q: [Effect of Tauroursodeoxycholic acid on cytochrome C-mediated apoptosis in HepG2 cells]. Zhonghua Gan Zang Bing Za Zhi. 2003 May;11(5):298-301. [PubMed:12773247 ]
  12. St-Pierre MV, Kullak-Ublick GA, Hagenbuch B, Meier PJ: Transport of bile acids in hepatic and non-hepatic tissues. J Exp Biol. 2001 May;204(Pt 10):1673-86. [PubMed:11316487 ]
  13. Claudel T, Staels B, Kuipers F: The Farnesoid X receptor: a molecular link between bile acid and lipid and glucose metabolism. Arterioscler Thromb Vasc Biol. 2005 Oct;25(10):2020-30. Epub 2005 Jul 21. [PubMed:16037564 ]
  14. Chiang JY: Bile acid regulation of hepatic physiology: III. Bile acids and nuclear receptors. Am J Physiol Gastrointest Liver Physiol. 2003 Mar;284(3):G349-56. [PubMed:12576301 ]
  15. Davis RA, Miyake JH, Hui TY, Spann NJ: Regulation of cholesterol-7alpha-hydroxylase: BAREly missing a SHP. J Lipid Res. 2002 Apr;43(4):533-43. [PubMed:11907135 ]
  16. Xu Y, Yang L, Zhao S, Wang Z: Large-scale production of tauroursodeoxycholic acid products through fermentation optimization of engineered Escherichia coli cell factory. Microb Cell Fact. 2019 Feb 8;18(1):34. doi: 10.1186/s12934-019-1076-2. [PubMed:30736766 ]