Hmdb loader
Survey
You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version5.0
StatusDetected but not Quantified
Creation Date2005-12-15 14:12:02 UTC
Update Date2022-03-07 02:49:10 UTC
HMDB IDHMDB0001569
Secondary Accession Numbers
  • HMDB01569
Metabolite Identification
Common NameEpi-coprostanol
DescriptionEpi-coprostanol, also known as epicholestanol or presteron, belongs to the class of organic compounds known as cholesterols and derivatives. Cholesterols and derivatives are compounds containing a 3-hydroxylated cholestane core. Thus, epi-coprostanol is considered to be a sterol lipid molecule. Epi-coprostanol is a very hydrophobic molecule, practically insoluble in water, and relatively neutral.
Structure
Data?1582752210
Synonyms
ValueSource
(3-alpha,5-alpha)-Cholestan-3-olChEBI
3alpha-Hydroxy-5alpha-cholestaneChEBI
5alpha-Cholestan-3alpha-olChEBI
Epi-cholestanolChEBI
EpicholestanolChEBI
EpidehydrocholesterinChEBI
PresteronChEBI
DihydrinKegg
(3-a,5-a)-Cholestan-3-olGenerator
(3-Α,5-α)-cholestan-3-olGenerator
3a-Hydroxy-5a-cholestaneGenerator
3Α-hydroxy-5α-cholestaneGenerator
5a-Cholestan-3a-olGenerator
5Α-cholestan-3α-olGenerator
5b-Cholestan-3a-olHMDB
5b-Cholestane-3a-olHMDB
5b-CholestanolHMDB
5beta-Cholestan-3alpha-olHMDB
5beta-Cholestane-3alpha-olHMDB
5beta-CholestanolHMDB
a-CoprostanolHMDB
alpha-CoprostanolHMDB
Epi-coprosterolHMDB
EpicoprostanolHMDB
EpicoprosterolHMDB
Chemical FormulaC27H48O
Average Molecular Weight388.6694
Monoisotopic Molecular Weight388.370516158
IUPAC Name(1S,2S,5R,7S,10R,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-5-ol
Traditional Name(1S,2S,5R,7S,10R,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-5-ol
CAS Registry Number516-95-0
SMILES
[H][C@@]1(CC[C@@]2([H])[C@]3([H])CC[C@@]4([H])C[C@H](O)CC[C@]4(C)[C@@]3([H])CC[C@]12C)[C@H](C)CCCC(C)C
InChI Identifier
InChI=1S/C27H48O/c1-18(2)7-6-8-19(3)23-11-12-24-22-10-9-20-17-21(28)13-15-26(20,4)25(22)14-16-27(23,24)5/h18-25,28H,6-17H2,1-5H3/t19-,20+,21-,22+,23-,24+,25+,26+,27-/m1/s1
InChI KeyQYIXCDOBOSTCEI-FBVYSKEZSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as cholesterols and derivatives. Cholesterols and derivatives are compounds containing a 3-hydroxylated cholestane core.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassSteroids and steroid derivatives
Sub ClassCholestane steroids
Direct ParentCholesterols and derivatives
Alternative Parents
Substituents
  • Cholesterol-skeleton
  • Cholesterol
  • 3-alpha-hydroxysteroid
  • Hydroxysteroid
  • 3-hydroxysteroid
  • Cyclic alcohol
  • Secondary alcohol
  • Organic oxygen compound
  • Hydrocarbon derivative
  • Organooxygen compound
  • Alcohol
  • Aliphatic homopolycyclic compound
Molecular FrameworkAliphatic homopolycyclic compounds
External Descriptors
Ontology
Physiological effect
Disposition
Biological locationRoute of exposureSource
Process
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point113 - 114 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility0.00034 mg/L @ 25 °C (est)The Good Scents Company Information System
LogPNot AvailableNot Available
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
PropertyValueSource
Water Solubility1.5e-05 g/LALOGPS
logP7.02ALOGPS
logP7.52ChemAxon
logS-7.4ALOGPS
pKa (Strongest Acidic)18.3ChemAxon
pKa (Strongest Basic)-1.4ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count1ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area20.23 ŲChemAxon
Rotatable Bond Count5ChemAxon
Refractivity119.77 m³·mol⁻¹ChemAxon
Polarizability51.12 ųChemAxon
Number of Rings4ChemAxon
BioavailabilityYesChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleNoChemAxon
Predicted Chromatographic Properties

Predicted Collision Cross Sections

PredictorAdduct TypeCCS Value (Å2)Reference
DarkChem[M+H]+197.23531661259
DarkChem[M-H]-193.30731661259
AllCCS[M+H]+205.16932859911
AllCCS[M-H]-201.75332859911
DeepCCS[M-2H]-237.9530932474
DeepCCS[M+Na]+211.90930932474
AllCCS[M+H]+205.232859911
AllCCS[M+H-H2O]+203.132859911
AllCCS[M+NH4]+207.132859911
AllCCS[M+Na]+207.732859911
AllCCS[M-H]-201.832859911
AllCCS[M+Na-2H]-203.732859911
AllCCS[M+HCOO]-205.932859911

Predicted Kovats Retention Indices

Underivatized

MetaboliteSMILESKovats RI ValueColumn TypeReference
Epi-coprostanol[H][C@@]1(CC[C@@]2([H])[C@]3([H])CC[C@@]4([H])C[C@H](O)CC[C@]4(C)[C@@]3([H])CC[C@]12C)[C@H](C)CCCC(C)C2298.6Standard polar33892256
Epi-coprostanol[H][C@@]1(CC[C@@]2([H])[C@]3([H])CC[C@@]4([H])C[C@H](O)CC[C@]4(C)[C@@]3([H])CC[C@]12C)[C@H](C)CCCC(C)C3127.2Standard non polar33892256
Epi-coprostanol[H][C@@]1(CC[C@@]2([H])[C@]3([H])CC[C@@]4([H])C[C@H](O)CC[C@]4(C)[C@@]3([H])CC[C@]12C)[C@H](C)CCCC(C)C3232.4Semi standard non polar33892256

Derivatized

Derivative Name / StructureSMILESKovats RI ValueColumn TypeReference
Epi-coprostanol,1TMS,isomer #1CC(C)CCC[C@@H](C)[C@H]1CC[C@H]2[C@@H]3CC[C@H]4C[C@H](O[Si](C)(C)C)CC[C@]4(C)[C@H]3CC[C@@]21C3096.0Semi standard non polar33892256
Epi-coprostanol,1TBDMS,isomer #1CC(C)CCC[C@@H](C)[C@H]1CC[C@H]2[C@@H]3CC[C@H]4C[C@H](O[Si](C)(C)C(C)(C)C)CC[C@]4(C)[C@H]3CC[C@@]21C3327.4Semi standard non polar33892256
Spectra

GC-MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted GC-MSPredicted GC-MS Spectrum - Epi-coprostanol GC-MS (Non-derivatized) - 70eV, Positivesplash10-05i0-0109000000-761dcf3fe040f44fa80e2017-09-01Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - Epi-coprostanol GC-MS (1 TMS) - 70eV, Positivesplash10-0002-3104900000-654dcbe9dd07b5a589f22017-10-06Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - Epi-coprostanol GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - Epi-coprostanol GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12Wishart LabView Spectrum

MS/MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Epi-coprostanol 10V, Positive-QTOFsplash10-0079-0009000000-48703a10acd86b4a93692016-06-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Epi-coprostanol 20V, Positive-QTOFsplash10-00dr-3149000000-3dac80dba8a7c194a9a62016-06-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Epi-coprostanol 40V, Positive-QTOFsplash10-0a4i-4169000000-067270e2b2860f462b882016-06-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Epi-coprostanol 10V, Negative-QTOFsplash10-000i-0009000000-5db181960ec36b693dc52016-08-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Epi-coprostanol 20V, Negative-QTOFsplash10-000i-0009000000-21dc22a0a9fa3809f2682016-08-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Epi-coprostanol 40V, Negative-QTOFsplash10-0ab9-1009000000-c90e4e689bf7be60948c2016-08-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Epi-coprostanol 10V, Negative-QTOFsplash10-000i-0009000000-34ef429285e58bb4b3142021-09-21Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Epi-coprostanol 20V, Negative-QTOFsplash10-000i-0009000000-780ac33d63315f6581592021-09-21Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Epi-coprostanol 40V, Negative-QTOFsplash10-000i-0009000000-2b8e0e9916832dc478762021-09-21Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Epi-coprostanol 10V, Positive-QTOFsplash10-000i-0009000000-44afea742dee80d0734e2021-09-25Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Epi-coprostanol 20V, Positive-QTOFsplash10-0a4i-9032000000-166905331dad000292e62021-09-25Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Epi-coprostanol 40V, Positive-QTOFsplash10-0a4j-9820000000-f066461902c4fe39e2d42021-09-25Wishart LabView Spectrum

NMR Spectra

Spectrum TypeDescriptionDeposition DateSourceView
Experimental 1D NMR1H NMR Spectrum (1D, 500 MHz, CDCl3, experimental)2012-12-04Wishart LabView Spectrum
Experimental 2D NMR[1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, CDCl3, experimental)2012-12-05Wishart LabView Spectrum
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biospecimen Locations
  • Feces
Tissue LocationsNot Available
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB022694
KNApSAcK IDNot Available
Chemspider ID59456
KEGG Compound IDC12978
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN ID6329
PubChem Compound66066
PDB IDNot Available
ChEBI ID31542
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
Good Scents IDrw1900681
References
Synthesis ReferenceRuzicka, L.; Brungger, H.; Eichenberger, E.; Meyer, Jules. Polyterpenes and polyterpenoids. XCI. Preparation of coprosterol, epicoprosterol and epihydrocholesterol. Spatial position of the hydroxyl group in the sterols. Helvetica Chimica Acta (1934), 17 1407-16.
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Derrien M, Jarde E, Gruau G, Pierson-Wickmann AC: Extreme variability of steroid profiles in cow feces and pig slurries at the regional scale: implications for the use of steroids to specify fecal pollution sources in waters. J Agric Food Chem. 2011 Jul 13;59(13):7294-302. doi: 10.1021/jf201040v. Epub 2011 Jun 7. [PubMed:21604805 ]
  2. Derrien M, Jarde E, Gruau G, Pourcher AM, Gourmelon M, Jadas-Hecart A, Pierson Wickmann AC: Origin of fecal contamination in waters from contrasted areas: stanols as Microbial Source Tracking markers. Water Res. 2012 Sep 1;46(13):4009-16. doi: 10.1016/j.watres.2012.05.003. Epub 2012 May 18. [PubMed:22673347 ]
  3. Montone RC, Martins CC, Bicego MC, Taniguchi S, da Silva DA, Campos LS, Weber RR: Distribution of sewage input in marine sediments around a maritime Antarctic research station indicated by molecular geochemical indicators. Sci Total Environ. 2010 Sep 15;408(20):4665-71. doi: 10.1016/j.scitotenv.2010.07.012. Epub 2010 Jul 24. [PubMed:20656326 ]
  4. Wu J, Hu R, Yue J, Yang Z, Zhang L: Determination of fecal sterols by gas chromatography-mass spectrometry with solid-phase extraction and injection-port derivatization. J Chromatogr A. 2009 Feb 13;1216(7):1053-8. doi: 10.1016/j.chroma.2008.12.054. Epub 2008 Dec 25. [PubMed:19147150 ]
  5. D'Anjou RM, Bradley RS, Balascio NL, Finkelstein DB: Climate impacts on human settlement and agricultural activities in northern Norway revealed through sediment biogeochemistry. Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20332-7. doi: 10.1073/pnas.1212730109. Epub 2012 Nov 26. [PubMed:23185025 ]
  6. Froehner S, Martins RF, Errera MR: Assessment of fecal sterols in Barigui River sediments in Curitiba, Brazil. Environ Monit Assess. 2009 Oct;157(1-4):591-600. doi: 10.1007/s10661-008-0559-0. Epub 2008 Oct 8. [PubMed:18841487 ]
  7. Bukiya AN, Belani JD, Rychnovsky S, Dopico AM: Specificity of cholesterol and analogs to modulate BK channels points to direct sterol-channel protein interactions. J Gen Physiol. 2011 Jan;137(1):93-110. doi: 10.1085/jgp.201010519. Epub 2010 Dec 13. [PubMed:21149543 ]
  8. Huang J, Sun L, Wang X, Wang Y, Huang T: Ecosystem evolution of seal colony and the influencing factors in the 20th century on Fildes Peninsula, West Antarctica. J Environ Sci (China). 2011;23(9):1431-6. [PubMed:22432277 ]
  9. Zgheib S, Gromaire MC, Lorgeoux C, Saad M, Chebbo G: Sterols: a tracer of organic matter in combined sewers. Water Sci Technol. 2008;57(11):1705-12. doi: 10.2166/wst.2008.285. [PubMed:18547920 ]
  10. Vane CH, Kim AW, McGowan S, Leng MJ, Heaton TH, Kendrick CP, Coombs P, Yang H, Swann GE: Sedimentary records of sewage pollution using faecal markers in contrasting peri-urban shallow lakes. Sci Total Environ. 2010 Dec 15;409(2):345-56. doi: 10.1016/j.scitotenv.2010.09.033. Epub 2010 Nov 9. [PubMed:21067795 ]
  11. Shah VG, Dunstan RH, Geary PM, Coombes P, Roberts TK, Von Nagy-Felsobuki E: Evaluating potential applications of faecal sterols in distinguishing sources of faecal contamination from mixed faecal samples. Water Res. 2007 Aug;41(16):3691-700. Epub 2007 Jul 5. [PubMed:17614115 ]
  12. Froehner S, Maceno M, Martins RF: Sediments as a potential tool for assessment of sewage pollution in Barigui River, Brazil. Environ Monit Assess. 2010 Nov;170(1-4):261-72. doi: 10.1007/s10661-009-1230-0. Epub 2009 Nov 14. [PubMed:19915953 ]
  13. Martins CC, Bicego MC, Figueira RC, Angelli JL, Combi T, Gallice WC, Mansur AV, Nardes E, Rocha ML, Wisnieski E, Ceschim LM, Ribeiro AP: Multi-molecular markers and metals as tracers of organic matter inputs and contamination status from an Environmental Protection Area in the SW Atlantic (Laranjeiras Bay, Brazil). Sci Total Environ. 2012 Feb 15;417-418:158-68. doi: 10.1016/j.scitotenv.2011.11.086. Epub 2012 Jan 13. [PubMed:22244354 ]
  14. Black LE, Brion GM, Freitas SJ: Multivariate logistic regression for predicting total culturable virus presence at the intake of a potable-water treatment plant: novel application of the atypical coliform/total coliform ratio. Appl Environ Microbiol. 2007 Jun;73(12):3965-74. Epub 2007 Apr 27. [PubMed:17468270 ]
  15. Chari BP, Halden RU: Predicting the concentration range of unmonitored chemicals in wastewater-dominated streams and in run-off from biosolids-amended soils. Sci Total Environ. 2012 Dec 1;440:314-20. doi: 10.1016/j.scitotenv.2012.05.042. Epub 2012 Jun 7. [PubMed:22682556 ]
  16. Tyagi P, Edwards DR, Coyne MS: Use of selected chemical markers in combination with a multiple regression model to assess the contribution of domesticated animal sources of fecal pollution in the environment. Chemosphere. 2007 Nov;69(10):1617-24. Epub 2007 Jun 27. [PubMed:17590407 ]
  17. Romanenko VG, Roser KS, Melvin JE, Begenisich T: The role of cell cholesterol and the cytoskeleton in the interaction between IK1 and maxi-K channels. Am J Physiol Cell Physiol. 2009 Apr;296(4):C878-88. doi: 10.1152/ajpcell.00438.2008. Epub 2009 Jan 28. [PubMed:19176762 ]
  18. Khallou J, Riottot M, Parquet M, Verneau C, Lutton C: Antilithiasic and hypocholesterolemic effects of diets containing autoclaved amylomaize starch in hamster. Dig Dis Sci. 1995 Dec;40(12):2540-8. [PubMed:8536509 ]
  19. Shah VG, Hugh Dunstan R, Geary PM, Coombes P, Roberts TK, Rothkirch T: Bacterial source tracking from diverse land use catchments by sterol ratios. Water Res. 2007 Aug;41(16):3667-74. Epub 2007 Apr 11. [PubMed:17433407 ]