Survey with prize
You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version4.0
StatusExpected but not Quantified
Creation Date2007-04-12 15:40:01 UTC
Update Date2020-02-26 21:26:07 UTC
HMDB IDHMDB0005844
Secondary Accession Numbers
  • HMDB05844
Metabolite Identification
Common Name8-isoprostaglandin E2
Description8-isoprostaglandin E2 is an isoprostane generated from the endoperoxide intermediate 8-iso-PGH2. Isoprostanes (IsoPs) are formed in vivo from the free radical-catalyzed peroxidation of arachidonate independent of cyclooxygenase (COX). Although the structures of these compounds are very similar to COX-derived prostaglandins (PGs), an important distinction between IsoPs and PGs is that IsoP bicycloendoperoxide intermediates contain side chains that are predominantly (>90%) oriented cis in relation to the prostane ring because the generation of these intermediates is favored kinetically. In contrast to other types of prostanoids, E2/D2-IsoPs are beta-hydroxyketone-containing compounds that can undergo reversible keto-enol tautomerization under both acidic and basic conditions, allowing rearrangement of the side chains that are initially cis to the more stable trans-configuration (PMID: 12746435 ). Dinoprostone is a naturally occurring prostaglandin E2 (PGE2) and the most common and most biologically active of the mammalian prostaglandins. It has important effects in labour and also stimulates osteoblasts to release factors which stimulate bone resorption by osteoclasts (a type of bone cell that removes bone tissue by removing the bone's mineralized matrix). PGE2 has been shown to increase vasodilation and cAMP production, to enhance the effects of bradykinin and histamine, to induce uterine contractions and to activate platelet aggregation. PGE2 is also responsible for maintaining the open passageway of the fetal ductus arteriosus; decreasing T-cell proliferation and lymphocyte migration and activating the secretion of IL-1alpha and IL-2. PGE2 exhibits both pro- and anti-inflammatory effects, particularly on dendritic cells (DC). Depending on the nature of maturation signals, PGE2 has different and sometimes opposite effects on DC biology. PGE2 exerts an inhibitory action, reducing the maturation of DC and their ability to present antigen. PGE2 has also been shown to stimulate DC and promote IL-12 production when given in combination with TNF-alpha. PGE2 is an environmentally bioactive substance. Its action is prolonged and sustained by other factors especially IL-10. It modulates the activities of professional DC by acting on their differentiation, maturation and their ability to secrete cytokines. PGE2 is a potent inducer of IL-10 in bone marrow-derived DC (BM-DC), and PGE2-induced IL-10 is a key regulator of the BM-DC pro-inflammatory phenotype. (PMID: 16978535 )Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways.
Structure
Data?1582752367
Synonyms
ValueSource
7-[3-Hydroxy-2-(3-hydroxy-1-octenyl)-5-oxocyclopentyl]-5-heptenoic acidChEBI
8-Epi-pge2ChEBI
8-Iso-pge2ChEBI
7-[3-Hydroxy-2-(3-hydroxy-1-octenyl)-5-oxocyclopentyl]-5-heptenoateGenerator
(5Z,8b,11a,13E,15S)-11,15-Dihydroxy-9-oxo-prosta-5,13-dien-1-OateHMDB
(5Z,8b,11a,13E,15S)-11,15-Dihydroxy-9-oxo-prosta-5,13-dien-1-Oic acidHMDB
8-Isoprostaglandin e2ChEBI
Chemical FormulaC20H32O5
Average Molecular Weight352.4651
Monoisotopic Molecular Weight352.224974134
IUPAC Name(5Z)-7-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoic acid
Traditional Name8-Iso-PGE2
CAS Registry Number27415-25-4
SMILES
CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)CC(=O)[C@H]1C\C=C/CCCC(O)=O
InChI Identifier
InChI=1S/C20H32O5/c1-2-3-6-9-15(21)12-13-17-16(18(22)14-19(17)23)10-7-4-5-8-11-20(24)25/h4,7,12-13,15-17,19,21,23H,2-3,5-6,8-11,14H2,1H3,(H,24,25)/b7-4-,13-12+/t15-,16-,17+,19+/m0/s1
InChI KeyXEYBRNLFEZDVAW-CLQOMRTCSA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as prostaglandins and related compounds. These are unsaturated carboxylic acids consisting of a 20 carbon skeleton that also contains a five member ring, and are based upon the fatty acid arachidonic acid.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassEicosanoids
Direct ParentProstaglandins and related compounds
Alternative Parents
Substituents
  • Prostaglandin skeleton
  • Long-chain fatty acid
  • Hydroxy fatty acid
  • Cyclopentanol
  • Fatty acid
  • Unsaturated fatty acid
  • Cyclic alcohol
  • Ketone
  • Cyclic ketone
  • Secondary alcohol
  • Carboxylic acid
  • Carboxylic acid derivative
  • Monocarboxylic acid or derivatives
  • Alcohol
  • Hydrocarbon derivative
  • Organic oxide
  • Organic oxygen compound
  • Organooxygen compound
  • Carbonyl group
  • Aliphatic homomonocyclic compound
Molecular FrameworkAliphatic homomonocyclic compounds
External Descriptors
Ontology
Disposition

Route of exposure:

Source:

Biological location:

Process

Naturally occurring process:

Role

Industrial application:

Biological role:

Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility0.044 g/LALOGPS
logP3.31ALOGPS
logP3.23ChemAxon
logS-3.9ALOGPS
pKa (Strongest Acidic)4.3ChemAxon
pKa (Strongest Basic)-1.6ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count5ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area94.83 ŲChemAxon
Rotatable Bond Count12ChemAxon
Refractivity99.44 m³·mol⁻¹ChemAxon
Polarizability41.06 ųChemAxon
Number of Rings1ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Spectra
Spectrum TypeDescriptionSplash KeyView
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-0a73-5395000000-02aad995307bb6a67f94Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (3 TMS) - 70eV, Positivesplash10-0ufu-9302550000-70dfa502c5c46d488f7aSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-00kr-0019000000-f68c6b496bc66132ac05Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-00kr-3197000000-5c1986771d855fb6ed90Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-000i-9210000000-12fff721757996d80d14Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0ue9-0009000000-8f0c944be1857e336476Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0f89-2059000000-3515e7355791e5a9219fSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0a4i-9430000000-8cbabd2bf835ca82e917Spectrum
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biospecimen LocationsNot Available
Tissue LocationsNot Available
Pathways
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB023780
KNApSAcK IDNot Available
Chemspider ID4446334
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound5283213
PDB IDNot Available
ChEBI ID131888
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB ID
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Gao L, Zackert WE, Hasford JJ, Danekis ME, Milne GL, Remmert C, Reese J, Yin H, Tai HH, Dey SK, Porter NA, Morrow JD: Formation of prostaglandins E2 and D2 via the isoprostane pathway: a mechanism for the generation of bioactive prostaglandins independent of cyclooxygenase. J Biol Chem. 2003 Aug 1;278(31):28479-89. Epub 2003 May 13. [PubMed:12746435 ]
  2. Harizi H, Gualde N: Pivotal role of PGE2 and IL-10 in the cross-regulation of dendritic cell-derived inflammatory mediators. Cell Mol Immunol. 2006 Aug;3(4):271-7. [PubMed:16978535 ]