You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version4.0
StatusDetected but not Quantified
Creation Date2008-08-14 18:37:03 UTC
Update Date2020-02-26 21:26:54 UTC
HMDB IDHMDB0006899
Secondary Accession Numbers
  • HMDB0028687
  • HMDB06899
  • HMDB28687
Metabolite Identification
Common NameAlanylglycine
DescriptionAlanylglycine is a dipeptide composed of alanine and glycine that is found in human urine. It is a breakdown product from endogenous and exogenous proteins. This peptide is generated by dipeptidyl-dipeptidase (or tetrapeptide dipeptidase) which leads to the release of dipeptides from a tetrapeptide (more specifically: Ala-GlyAla-Gly). The enzyme acts more slowly on Ala-AlaAla-Ala and Gly-GlyGly-Gly.
Structure
Data?1582752414
Synonyms
ValueSource
AGChEBI
L-Ala-glyChEBI
N-L-AlanylglycineChEBI
(S)-AlanylglycineHMDB
a-g DipeptideHMDB
AG dipeptideHMDB
Ala-glyHMDB
Alanine glycine dipeptideHMDB
Alanine-glycine dipeptideHMDB
Alanyl-glycineHMDB
L-AlanylglycineHMDB
L-alpha-AlanylglycineHMDB
L-Α-alanylglycineHMDB
N-AlanylglycineHMDB
NSC 89597HMDB
AlanylglycineChEBI
Chemical FormulaC5H10N2O3
Average Molecular Weight146.146
Monoisotopic Molecular Weight146.06914219
IUPAC Name2-[(2S)-2-aminopropanamido]acetic acid
Traditional Name[(2S)-2-aminopropanamido]acetic acid
CAS Registry Number687-69-4
SMILES
C[C@H](N)C(=O)NCC(O)=O
InChI Identifier
InChI=1S/C5H10N2O3/c1-3(6)5(10)7-2-4(8)9/h3H,2,6H2,1H3,(H,7,10)(H,8,9)/t3-/m0/s1
InChI KeyCXISPYVYMQWFLE-VKHMYHEASA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as dipeptides. These are organic compounds containing a sequence of exactly two alpha-amino acids joined by a peptide bond.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassCarboxylic acids and derivatives
Sub ClassAmino acids, peptides, and analogues
Direct ParentDipeptides
Alternative Parents
Substituents
  • Alpha-dipeptide
  • N-acyl-alpha-amino acid
  • N-acyl-alpha amino acid or derivatives
  • Alpha-amino acid amide
  • Alanine or derivatives
  • Alpha-amino acid or derivatives
  • Amino acid or derivatives
  • Carboxamide group
  • Amino acid
  • Carboxylic acid salt
  • Secondary carboxylic acid amide
  • Carboxylic acid
  • Monocarboxylic acid or derivatives
  • Organic nitrogen compound
  • Organonitrogen compound
  • Organooxygen compound
  • Primary amine
  • Organic zwitterion
  • Primary aliphatic amine
  • Organic salt
  • Hydrocarbon derivative
  • Organic oxide
  • Carbonyl group
  • Organopnictogen compound
  • Amine
  • Organic oxygen compound
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
Disposition

Source:

Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility68.3 g/LALOGPS
logP-2.9ALOGPS
logP-3.9ChemAxon
logS-0.33ALOGPS
pKa (Strongest Acidic)3.66ChemAxon
pKa (Strongest Basic)8.39ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area92.42 ŲChemAxon
Rotatable Bond Count3ChemAxon
Refractivity33.3 m³·mol⁻¹ChemAxon
Polarizability13.76 ųChemAxon
Number of Rings0ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Spectra
Spectrum TypeDescriptionSplash KeyView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0002-5900000000-8fa075fdba9c7139d887Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0006-9000000000-4d30c875ef57916f7e13Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0a6r-9000000000-3d835db294387984e9c1Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0002-0900000000-b5286fb050c724bc01d6Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-00dj-7900000000-192cacfc6784977ccfceSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-05fr-9000000000-353a9bff034602637249Spectrum
Biological Properties
Cellular LocationsNot Available
Biospecimen Locations
  • Feces
Tissue LocationsNot Available
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Colorectal cancer
details
Associated Disorders and Diseases
Disease References
Colorectal cancer
  1. Goedert JJ, Sampson JN, Moore SC, Xiao Q, Xiong X, Hayes RB, Ahn J, Shi J, Sinha R: Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 2014 Sep;35(9):2089-96. doi: 10.1093/carcin/bgu131. Epub 2014 Jul 18. [PubMed:25037050 ]
Associated OMIM IDs
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDNot Available
KNApSAcK IDNot Available
Chemspider IDNot Available
KEGG Compound IDNot Available
BioCyc IDALA-GLY
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound6998028
PDB IDNot Available
ChEBI ID73757
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB ID
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Hedwig GR, Hogseth E, Hoiland H: Volumetric properties of the glycyl group of proteins in aqueous solution at high pressures. Phys Chem Chem Phys. 2008 Feb 14;10(6):884-97. doi: 10.1039/b706345h. Epub 2007 Oct 5. [PubMed:18231691 ]
  2. Gullion T, Kishore R, Asakura T: Determining dihedral angles and local structure in silk peptide by 13C-2H REDOR. J Am Chem Soc. 2003 Jun 25;125(25):7510-1. [PubMed:12812479 ]
  3. Watabe M, Kai M, Asanuma S, Yoshikane M, Horiuchi A, Ogasawara A, Watanabe T, Mikami T, Matsumoto T: Platinum(IV) complexes with dipeptide. X-ray crystal structure, 195Pt NMR spectra, and their inhibitory glucose metabolism activity in Candida albicans. Inorg Chem. 2001 Mar 26;40(7):1496-500. [PubMed:11261956 ]
  4. Chen WJ, Boehlert CC, Rider K, Armstrong RN: Synthesis and characterization of the oxygen and desthio analogues of glutathione as dead-end inhibitors of glutathione S-transferase. Biochem Biophys Res Commun. 1985 Apr 16;128(1):233-40. [PubMed:3985965 ]
  5. Barding GA Jr, Fukao T, Beni S, Bailey-Serres J, Larive CK: Differential metabolic regulation governed by the rice SUB1A gene during submergence stress and identification of alanylglycine by 1H NMR spectroscopy. J Proteome Res. 2012 Jan 1;11(1):320-30. doi: 10.1021/pr200919b. Epub 2011 Nov 11. [PubMed:22017194 ]
  6. Vogt LJ, Sim-Selley LJ, Childers SR, Wiley RG, Vogt BA: Colocalization of mu-opioid receptors and activated G-proteins in rat cingulate cortex. J Pharmacol Exp Ther. 2001 Dec;299(3):840-8. [PubMed:11714867 ]
  7. Rai DK, Mooney A, Kenny PT: A tandem mass spectrometric investigation of N-(3-ferrocenyl-2-naphthoyl) dipeptide ethyl esters and N-(6-ferrocenyl-2-naphthoyl) dipeptide ethyl esters. Rapid Commun Mass Spectrom. 2011 Oct 15;25(19):2905-10. doi: 10.1002/rcm.5184. [PubMed:21913269 ]
  8. Blagojevic V, Chramow A, Schneider BB, Covey TR, Bohme DK: Differential mobility spectrometry of isomeric protonated dipeptides: modifier and field effects on ion mobility and stability. Anal Chem. 2011 May 1;83(9):3470-6. doi: 10.1021/ac200100s. Epub 2011 Apr 19. [PubMed:21504141 ]
  9. Watabe M, Fukuda H, Kitsukawa K, Nakajima H, Yukawa Y, Igarashi S, Fujii Y, Takayama T: Preparation of platinum(IV) complexes with dipeptide and diimine. X-ray crystal structure and 195Pt NMR spectra. J Inorg Biochem. 2006 Oct;100(10):1653-9. Epub 2006 Jun 9. [PubMed:16857262 ]
  10. Tafazzoli M, Amini SK: Theoretical 13C chemical shift, 14N, and 2H quadrupole coupling- constant studies of hydrogen bonding in L-alanylglycine dipeptide. Magn Reson Chem. 2008 Apr;46(4):370-6. doi: 10.1002/mrc.2185. [PubMed:18273875 ]
  11. Price WD, Williams ER: Activation of Peptide ions by blackbody radiation: factors that lead to dissociation kinetics in the rapid energy exchange limit. J Phys Chem A. 1997 Nov 20;101(47):8844-52. [PubMed:16604162 ]
  12. Barding GA Jr, Beni S, Fukao T, Bailey-Serres J, Larive CK: Comparison of GC-MS and NMR for metabolite profiling of rice subjected to submergence stress. J Proteome Res. 2013 Feb 1;12(2):898-909. doi: 10.1021/pr300953k. Epub 2012 Dec 27. [PubMed:23205590 ]
  13. Karnezis A, Barlow CK, O'Hair RA, McFadyen WD: Peptide derivatization as a strategy to form fixed-charge peptide radicals. Rapid Commun Mass Spectrom. 2006;20(19):2865-70. [PubMed:16941727 ]
  14. Hovagimyan KG, Gerig JT: Interactions of trimethylamine N-oxide and water with cyclo-alanylglycine. J Phys Chem B. 2005 Dec 22;109(50):24142-51. [PubMed:16375406 ]
  15. Padmaja L, Ravikumar C, James C, Jayakumar VS, Hubert Joe I: Analysis of vibrational spectra of L-alanylglycine based on density functional theory calculations. Spectrochim Acta A Mol Biomol Spectrosc. 2008 Nov 1;71(1):252-62. doi: 10.1016/j.saa.2007.12.019. Epub 2007 Dec 28. [PubMed:18243781 ]
  16. Stevens MM, Allen S, Davies MC, Roberts CJ, Sakata JK, Tendler SJ, Tirrell DA, Williams PM: Molecular level investigations of the inter- and intramolecular interactions of pH-responsive artificial triblock proteins. Biomacromolecules. 2005 May-Jun;6(3):1266-71. [PubMed:15877341 ]
  17. Strickler MA, Gerig JT: Intermolecular Overhauser effects in fluoroalcohol solutions of cyclo-alanylglycine. Biopolymers. 2002 Aug 15;64(5):227-35. [PubMed:12115130 ]
  18. Dunkel A, Hofmann T: Sensory-directed identification of beta-alanyl dipeptides as contributors to the thick-sour and white-meaty orosensation induced by chicken broth. J Agric Food Chem. 2009 Nov 11;57(21):9867-77. doi: 10.1021/jf900948r. [PubMed:19817413 ]