You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version4.0
StatusDetected and Quantified
Creation Date2010-02-22 10:23:05 UTC
Update Date2021-04-12 19:32:06 UTC
HMDB IDHMDB0013326
Secondary Accession Numbers
  • HMDB13326
Metabolite Identification
Common Nametrans-2-Dodecenoylcarnitine
Descriptiontrans-2-Dodecenoylcarnitine is an acylcarnitine. More specifically, it is an trans-2-dodecenoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279 ). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy.  This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. trans-2-Dodecenoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine trans-2-dodecenoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494 ). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. In particular trans-2-dodecenoylcarnitine is elevated in the blood or plasma of individuals with mitochondrial dysfunction in diabetes patients (PMID: 28726959 ) and children obesity (PMID: 23108202 ). It is also decreased in the blood or plasma of individuals with placental abruption (PMID: 27300725 ) increase in dodecanoylcarnitine/dodecenoylcarnitine (c12 / c12:1). Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279 ). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Structure
Data?1582753109
SynonymsNot Available
Chemical FormulaC19H35NO4
Average Molecular Weight341.492
Monoisotopic Molecular Weight341.256608611
IUPAC Name(4S)-4-[(2E)-dodec-2-enoyloxy]-4-(trimethylazaniumyl)butanoate
Traditional Name(4S)-4-[(2E)-dodec-2-enoyloxy]-4-(trimethylammonio)butanoate
CAS Registry NumberNot Available
SMILES
CCCCCCCCC\C=C\C(=O)O[C@@H](CCC([O-])=O)[N+](C)(C)C
InChI Identifier
InChI=1S/C19H35NO4/c1-5-6-7-8-9-10-11-12-13-14-19(23)24-17(20(2,3)4)15-16-18(21)22/h13-14,17H,5-12,15-16H2,1-4H3/b14-13+/t17-/m0/s1
InChI KeyJEOZLTJHDSKQIT-CLVCIHKQSA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as fatty acid esters. These are carboxylic ester derivatives of a fatty acid.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassFatty acid esters
Direct ParentFatty acid esters
Alternative Parents
Substituents
  • Fatty acid ester
  • Dicarboxylic acid or derivatives
  • Tetraalkylammonium salt
  • Alpha,beta-unsaturated carboxylic ester
  • Enoate ester
  • Carboxylic acid ester
  • Carboxylic acid salt
  • Carboxylic acid derivative
  • Carboxylic acid
  • Carbonyl group
  • Organooxygen compound
  • Organonitrogen compound
  • Organic salt
  • Hydrocarbon derivative
  • Organic oxide
  • Organopnictogen compound
  • Organic oxygen compound
  • Organic nitrogen compound
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External DescriptorsNot Available
Ontology
Disposition

Route of exposure:

Source:

Biological location:

Process

Naturally occurring process:

Role

Industrial application:

Biological role:

Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility3.4e-05 g/LALOGPS
logP0.16ALOGPS
logP0.81ChemAxon
logS-7.1ALOGPS
pKa (Strongest Acidic)4.13ChemAxon
pKa (Strongest Basic)-6.9ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area66.43 ŲChemAxon
Rotatable Bond Count15ChemAxon
Refractivity119.7 m³·mol⁻¹ChemAxon
Polarizability41.08 ųChemAxon
Number of Rings0ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Spectra
Spectrum TypeDescriptionSplash KeyView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-006y-1449000000-4d5f18101fd4b462d78fSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0f76-2900000000-6152f4520fea29ca59eeSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-052o-9400000000-5532b23cc830002dfa1bSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-002f-0519000000-ea501ed93964249ff1a1Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0059-0931000000-956fd9059c7c922eb157Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0fbd-4900000000-c91b256ba56f3f8abb22Spectrum
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biospecimen Locations
  • Blood
  • Feces
  • Urine
Tissue LocationsNot Available
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothNormal details
BloodDetected and Quantified0.10-0.40 uMAdult (>18 years old)Both
Normal
details
BloodDetected and Quantified0.23(0.07) uMAdult (>18 years old)BothNormal details
BloodExpected but not QuantifiedNot QuantifiedNot AvailableNot Available
Normal
      Not Available
details
BloodDetected and Quantified0.10 +/- 0.03 uMChildren (1-13 years old)BothNormal details
BloodDetected and Quantified<0.12 uMAdolescent (13-18 years old)MaleNormal details
FecesDetected and Quantified0.47 +/- 0.33 nmol/g wet fecesAdult (>18 years old)Both
Normal
details
FecesDetected and Quantified0.43 +/- 0.26 nmol/g wet fecesAdult (>18 years old)Both
Normal
details
UrineDetected and Quantified0.028 (0.011-0.042) umol/mmol creatinineAdult (>18 years old)Both
Normal
details
UrineDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothNormal details
UrineDetected and Quantified0.02-0.14 umol/mmol creatinineNewborn (0-30 days old)BothNormal
    • López Hernández Y...
details
UrineDetected and Quantified0.06 +/- 0.02 umol/mmol creatinineNewborn (0-30 days old)FemaleNormal
    • López Hernández Y...
details
UrineDetected and Quantified0.06 +/- 0.02 umol/mmol creatinineNewborn (0-30 days old)MaleNormal
    • López Hernández Y...
details
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified0.29(0.1) uMAdult (>18 years old)BothHeart failure with preserved ejection fraction details
BloodDetected and Quantified0.16 +/- 0.05 uMChildren (1-13 years old)Both
Obese
details
BloodDetected and Quantified0.16 +/- 0.06 uMChildren (1-13 years old)Both
Obese
details
BloodDetected and Quantified0.16 +/- 0.06 uMChildren (1-13 years old)Both
Obese
details
BloodDetected and Quantified0.16 +/- 0.07 uMChildren (1-13 years old)Both
Obese
details
BloodDetected and Quantified0.130 +/- 0.040 uMChildren (1-13 years old)Both
Obesity
    • Metabolomics reve...
details
BloodDetected and Quantified0.131 +/- 0.046 uMChildren (1-13 years old)Both
Obesity
    • Metabolomics reve...
details
BloodDetected and Quantified0.13 +/- 0.04 uMChildren (1-13 years old)Both
Obese
details
BloodDetected and Quantified0.15 uMAdolescent (13-18 years old)Male
Glutaric aciduria II
details
BloodDetected and Quantified0.22 uMAdolescent (13-18 years old)MaleGlutaric aciduria II details
Associated Disorders and Diseases
Disease References
Glutaric aciduria II
  1. Prasad M, Hussain S: Glutaric aciduria type II presenting as myopathy and rhabdomyolysis in a teenager. J Child Neurol. 2015 Jan;30(1):96-9. doi: 10.1177/0883073813516676. Epub 2014 Jan 21. [PubMed:24453145 ]
Obesity
  1. Reinehr T, Wolters B, Knop C, Lass N, Hellmuth C, Harder U, Peissner W, Wahl S, Grallert H, Adamski J, Illig T, Prehn C, Yu Z, Wang-Sattler R, Koletzko B: Changes in the serum metabolite profile in obese children with weight loss. Eur J Nutr. 2015 Mar;54(2):173-81. doi: 10.1007/s00394-014-0698-8. Epub 2014 Apr 17. [PubMed:24740590 ]
  2. Wahl S, Yu Z, Kleber M, Singmann P, Holzapfel C, He Y, Mittelstrass K, Polonikov A, Prehn C, Romisch-Margl W, Adamski J, Suhre K, Grallert H, Illig T, Wang-Sattler R, Reinehr T: Childhood obesity is associated with changes in the serum metabolite profile. Obes Facts. 2012;5(5):660-70. doi: 10.1159/000343204. Epub 2012 Oct 4. [PubMed:23108202 ]
  3. Simone Wahl, Christina Holzapfel, Zhonghao Yu, Michaela Breier, Ivan Kondofersky, Christiane Fuchs, Paula Singmann, Cornelia Prehn, Jerzy Adamski, Harald Grallert, Thomas Illig, Rui Wang-Sattler, Thomas Reinehr (2013). Metabolomics reveals determinants of weight loss during lifestyle intervention in obese children. Metabolomics.
Associated OMIM IDs
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDNot Available
KNApSAcK IDNot Available
Chemspider IDNot Available
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound53481671
PDB IDNot Available
ChEBI ID89717
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDMDB00000852
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
  2. Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
  3. Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
  4. Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
  5. FRITZ IB: Action of carnitine on long chain fatty acid oxidation by liver. Am J Physiol. 1959 Aug;197:297-304. doi: 10.1152/ajplegacy.1959.197.2.297. [PubMed:13825279 ]
  6. Violante S, Achetib N, van Roermund CWT, Hagen J, Dodatko T, Vaz FM, Waterham HR, Chen H, Baes M, Yu C, Argmann CA, Houten SM: Peroxisomes can oxidize medium- and long-chain fatty acids through a pathway involving ABCD3 and HSD17B4. FASEB J. 2019 Mar;33(3):4355-4364. doi: 10.1096/fj.201801498R. Epub 2018 Dec 12. [PubMed:30540494 ]
  7. Abu Bakar MH, Sarmidi MR: Association of cultured myotubes and fasting plasma metabolite profiles with mitochondrial dysfunction in type 2 diabetes subjects. Mol Biosyst. 2017 Aug 22;13(9):1838-1853. doi: 10.1039/c7mb00333a. [PubMed:28726959 ]
  8. Wahl S, Yu Z, Kleber M, Singmann P, Holzapfel C, He Y, Mittelstrass K, Polonikov A, Prehn C, Romisch-Margl W, Adamski J, Suhre K, Grallert H, Illig T, Wang-Sattler R, Reinehr T: Childhood obesity is associated with changes in the serum metabolite profile. Obes Facts. 2012;5(5):660-70. doi: 10.1159/000343204. Epub 2012 Oct 4. [PubMed:23108202 ]
  9. Gelaye B, Sumner SJ, McRitchie S, Carlson JE, Ananth CV, Enquobahrie DA, Qiu C, Sorensen TK, Williams MA: Maternal Early Pregnancy Serum Metabolomics Profile and Abnormal Vaginal Bleeding as Predictors of Placental Abruption: A Prospective Study. PLoS One. 2016 Jun 14;11(6):e0156755. doi: 10.1371/journal.pone.0156755. eCollection 2016. [PubMed:27300725 ]
  10. Ferdinandusse S, Mulders J, IJlst L, Denis S, Dacremont G, Waterham HR, Wanders RJ: Molecular cloning and expression of human carnitine octanoyltransferase: evidence for its role in the peroxisomal beta-oxidation of branched-chain fatty acids. Biochem Biophys Res Commun. 1999 Sep 16;263(1):213-8. [PubMed:10486279 ]
  11. Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.