You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version5.0
StatusExpected but not Quantified
Creation Date2012-09-06 15:16:52 UTC
Update Date2021-09-14 15:47:12 UTC
HMDB IDHMDB0015648
Secondary Accession Numbers
  • HMDB15648
Metabolite Identification
Common NameFesoterodine
DescriptionFesoterodine, also known as toviaz, belongs to the class of organic compounds known as diphenylmethanes. Diphenylmethanes are compounds containing a diphenylmethane moiety, which consists of a methane wherein two hydrogen atoms are replaced by two phenyl groups. Fesoterodine is a drug which is used for the treatment of overactive bladder (with symptoms of urinary frequency, urgency, or urge incontinence). Therefore, acting as a competitive muscarinic receptor antagonist, fesoterodine ultimately acts to decrease the detrusor pressure by its muscarinic antagonism, thereby decreasing bladder contraction and consequently, the urge to urinate. Fesoterodine is a very strong basic compound (based on its pKa). This results in the inhibition of bladder contraction, decrease in detrusor pressure, and an incomplete emptying of the bladder. The 5-hydroxymethyl metabolite, which exhibits an antimuscarinic activity. In-vivo the fesoteridine prodrug is broken down into its active metabolite, 5-hydroxymethyl tolterodine (5-HMT), by plasma esterases. It is an antimuscarinic prodrug used for treating overactive bladder syndrome. Mouse, Intravenous, NOAEL: 10 mg/kg. Fesoterodine is only found in individuals that have used or taken this drug. Mouse, Oral, LD50: ~ 316 mg/kg. Extensive metabolism via CYP2D6 and CYP3A4 into inactive metabolites. Both urinary bladder contraction and salivation are mediated via cholinergic muscarinic receptors.
Structure
Data?1582753320
Synonyms
ValueSource
Fesoterodine fumarateHMDB
ToviazHMDB
Chemical FormulaC26H37NO3
Average Molecular Weight411.5769
Monoisotopic Molecular Weight411.277344055
IUPAC Name2-[(1R)-3-[bis(propan-2-yl)amino]-1-phenylpropyl]-4-(hydroxymethyl)phenyl 2-methylpropanoate
Traditional Namefesoterodine
CAS Registry Number286930-03-8
SMILES
CC(C)N(CC[C@H](C1=CC=CC=C1)C1=C(OC(=O)C(C)C)C=CC(CO)=C1)C(C)C
InChI Identifier
InChI=1S/C26H37NO3/c1-18(2)26(29)30-25-13-12-21(17-28)16-24(25)23(22-10-8-7-9-11-22)14-15-27(19(3)4)20(5)6/h7-13,16,18-20,23,28H,14-15,17H2,1-6H3/t23-/m1/s1
InChI KeyDCCSDBARQIPTGU-HSZRJFAPSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as diphenylmethanes. Diphenylmethanes are compounds containing a diphenylmethane moiety, which consists of a methane wherein two hydrogen atoms are replaced by two phenyl groups.
KingdomOrganic compounds
Super ClassBenzenoids
ClassBenzene and substituted derivatives
Sub ClassDiphenylmethanes
Direct ParentDiphenylmethanes
Alternative Parents
Substituents
  • Diphenylmethane
  • Phenol ester
  • Phenoxy compound
  • Benzyl alcohol
  • Aralkylamine
  • Amino acid or derivatives
  • Carboxylic acid ester
  • Tertiary amine
  • Tertiary aliphatic amine
  • Carboxylic acid derivative
  • Monocarboxylic acid or derivatives
  • Hydrocarbon derivative
  • Organooxygen compound
  • Organonitrogen compound
  • Amine
  • Organic oxide
  • Organopnictogen compound
  • Alcohol
  • Carbonyl group
  • Organic oxygen compound
  • Organic nitrogen compound
  • Primary alcohol
  • Aromatic alcohol
  • Aromatic homomonocyclic compound
Molecular FrameworkAromatic homomonocyclic compounds
External DescriptorsNot Available
Ontology
Disposition

Biological location:

Role

Industrial application:

Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Molecular Properties
PropertyValueSource
Water Solubility0.002 g/LALOGPS
logP5.45ALOGPS
logP5.7ChemAxon
logS-5.3ALOGPS
pKa (Strongest Acidic)14.98ChemAxon
pKa (Strongest Basic)10.64ChemAxon
Physiological Charge1ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area49.77 ŲChemAxon
Rotatable Bond Count11ChemAxon
Refractivity124.08 m³·mol⁻¹ChemAxon
Polarizability48.29 ųChemAxon
Number of Rings2ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Predicted Spectral Properties

Collision Cross Sections

NameAdductTypeData SourceValueReference
DarkChem[M+H]+PredictedNot Available197.41231661259
DarkChem[M-H]-PredictedNot Available198.14731661259

Retention Indices

Underivatized

Not Available

Derivatized

DerivativeValueReference
Fesoterodine,1TMS,#12855.3572https://arxiv.org/abs/1905.12712
Fesoterodine,1TBDMS,#13049.165https://arxiv.org/abs/1905.12712
Spectra

GC-MS

Spectrum TypeDescriptionSplash KeyDeposition DateView
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-03k9-8779000000-2e606385c85d52b6ad732017-09-01View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (1 TMS) - 70eV, Positivesplash10-00dj-9457500000-02377439d5649ab75cde2017-10-06View Spectrum

LC-MS/MS

Spectrum TypeDescriptionSplash KeyDeposition DateView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-03kc-3009400000-978607a6967c2d8257882016-08-01View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-00dl-7119000000-6475282629458a0a72582016-08-01View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-00dl-9112000000-b09c728a097046fe179f2016-08-01View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-03di-1105900000-caf232db2b163610a8832016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-03yu-4319400000-e5681e839bc0482417952016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0uy0-9633000000-84e9d271fc2bbafaea1c2016-08-03View Spectrum
Biological Properties
Cellular Locations
  • Membrane
Biospecimen Locations
  • Blood
  • Urine
Tissue LocationsNot Available
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodExpected but not QuantifiedNot QuantifiedNot AvailableNot AvailableTaking drug identified by DrugBank entry DB06702 details
UrineExpected but not QuantifiedNot QuantifiedNot AvailableNot AvailableTaking drug identified by DrugBank entry DB06702 details
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDDB06702
Phenol Explorer Compound IDNot Available
FooDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID5293755
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkFesoterodine
METLIN IDNot Available
PubChem Compound6918558
PDB IDNot Available
ChEBI ID775715
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Malhotra B, Gandelman K, Sachse R, Wood N, Michel MC: The design and development of fesoterodine as a prodrug of 5-hydroxymethyl tolterodine (5-HMT), the active metabolite of tolterodine. Curr Med Chem. 2009;16(33):4481-9. [PubMed:19835561 ]
  2. Malhotra B, Dickins M, Alvey C, Jumadilova Z, Li X, Duczynski G, Gandelman K: Effects of the moderate CYP3A4 inhibitor, fluconazole, on the pharmacokinetics of fesoterodine in healthy subjects. Br J Clin Pharmacol. 2011 Aug;72(2):263-9. doi: 10.1111/j.1365-2125.2011.04007.x. [PubMed:21545485 ]

Enzymes

General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1'-hydroxylation and midazolam 4-hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2-exo-monooxygenase. The enzyme also hydroxylates etoposide.
Gene Name:
CYP3A4
Uniprot ID:
P08684
Molecular weight:
57255.585
References
  1. Malhotra B, Guan Z, Wood N, Gandelman K: Pharmacokinetic profile of fesoterodine. Int J Clin Pharmacol Ther. 2008 Nov;46(11):556-63. [PubMed:19000553 ]
  2. Malhotra B, Dickins M, Alvey C, Jumadilova Z, Li X, Duczynski G, Gandelman K: Effects of the moderate CYP3A4 inhibitor, fluconazole, on the pharmacokinetics of fesoterodine in healthy subjects. Br J Clin Pharmacol. 2011 Aug;72(2):263-9. doi: 10.1111/j.1365-2125.2011.04007.x. [PubMed:21545485 ]
  3. Malhotra B, Sachse R, Wood N: Evaluation of drug-drug interactions with fesoterodine. Eur J Clin Pharmacol. 2009 Jun;65(6):551-60. doi: 10.1007/s00228-009-0648-1. Epub 2009 Apr 4. [PubMed:19347334 ]
  4. Malhotra BK, Wood N, Sachse R: Influence of age, gender, and race on pharmacokinetics, pharmacodynamics, and safety of fesoterodine. Int J Clin Pharmacol Ther. 2009 Sep;47(9):570-8. [PubMed:19761716 ]
General function:
Involved in monooxygenase activity
Specific function:
Responsible for the metabolism of many drugs and environmental chemicals that it oxidizes. It is involved in the metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic antidepressants.
Gene Name:
CYP2D6
Uniprot ID:
P10635
Molecular weight:
55768.94
References
  1. Malhotra B, Guan Z, Wood N, Gandelman K: Pharmacokinetic profile of fesoterodine. Int J Clin Pharmacol Ther. 2008 Nov;46(11):556-63. [PubMed:19000553 ]
  2. Malhotra B, Dickins M, Alvey C, Jumadilova Z, Li X, Duczynski G, Gandelman K: Effects of the moderate CYP3A4 inhibitor, fluconazole, on the pharmacokinetics of fesoterodine in healthy subjects. Br J Clin Pharmacol. 2011 Aug;72(2):263-9. doi: 10.1111/j.1365-2125.2011.04007.x. [PubMed:21545485 ]
  3. Malhotra B, Sachse R, Wood N: Evaluation of drug-drug interactions with fesoterodine. Eur J Clin Pharmacol. 2009 Jun;65(6):551-60. doi: 10.1007/s00228-009-0648-1. Epub 2009 Apr 4. [PubMed:19347334 ]
  4. Malhotra BK, Wood N, Sachse R: Influence of age, gender, and race on pharmacokinetics, pharmacodynamics, and safety of fesoterodine. Int J Clin Pharmacol Ther. 2009 Sep;47(9):570-8. [PubMed:19761716 ]
General function:
Involved in G-protein coupled receptor protein signaling pathway
Specific function:
The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is Pi turnover
Gene Name:
CHRM3
Uniprot ID:
P20309
Molecular weight:
66127.4
References
  1. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [PubMed:11752352 ]
  2. Nilvebrant L: Tolterodine and its active 5-hydroxymethyl metabolite: pure muscarinic receptor antagonists. Pharmacol Toxicol. 2002 May;90(5):260-7. [PubMed:12076307 ]
General function:
Involved in G-protein coupled receptor protein signaling pathway
Specific function:
The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is Pi turnover
Gene Name:
CHRM1
Uniprot ID:
P11229
Molecular weight:
51420.4
References
  1. Nilvebrant L: Tolterodine and its active 5-hydroxymethyl metabolite: pure muscarinic receptor antagonists. Pharmacol Toxicol. 2002 May;90(5):260-7. [PubMed:12076307 ]
General function:
Involved in G-protein coupled receptor protein signaling pathway
Specific function:
The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is adenylate cyclase inhibition
Gene Name:
CHRM2
Uniprot ID:
P08172
Molecular weight:
51714.6
References
  1. Mansfield KJ, Chandran JJ, Vaux KJ, Millard RJ, Christopoulos A, Mitchelson FJ, Burcher E: Comparison of receptor binding characteristics of commonly used muscarinic antagonists in human bladder detrusor and mucosa. J Pharmacol Exp Ther. 2009 Mar;328(3):893-9. doi: 10.1124/jpet.108.145508. Epub 2008 Nov 24. [PubMed:19029429 ]
General function:
Involved in G-protein coupled receptor protein signaling pathway
Specific function:
The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is inhibition of adenylate cyclase
Gene Name:
CHRM4
Uniprot ID:
P08173
Molecular weight:
53048.7
References
  1. Mansfield KJ, Chandran JJ, Vaux KJ, Millard RJ, Christopoulos A, Mitchelson FJ, Burcher E: Comparison of receptor binding characteristics of commonly used muscarinic antagonists in human bladder detrusor and mucosa. J Pharmacol Exp Ther. 2009 Mar;328(3):893-9. doi: 10.1124/jpet.108.145508. Epub 2008 Nov 24. [PubMed:19029429 ]
General function:
Involved in G-protein coupled receptor protein signaling pathway
Specific function:
The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is Pi turnover
Gene Name:
CHRM5
Uniprot ID:
P08912
Molecular weight:
60073.2
References
  1. Mansfield KJ, Chandran JJ, Vaux KJ, Millard RJ, Christopoulos A, Mitchelson FJ, Burcher E: Comparison of receptor binding characteristics of commonly used muscarinic antagonists in human bladder detrusor and mucosa. J Pharmacol Exp Ther. 2009 Mar;328(3):893-9. doi: 10.1124/jpet.108.145508. Epub 2008 Nov 24. [PubMed:19029429 ]