You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
StatusDetected but not Quantified
Creation Date2012-09-06 21:02:44 UTC
Update Date2020-02-26 21:42:27 UTC
Secondary Accession Numbers
  • HMDB28850
Metabolite Identification
Common NameGlycyl-Serine
DescriptionGlycyl-Serine is a dipeptide composed of glycine and serine. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. This dipeptide has not yet been identified in human tissues or biofluids and so it is classified as an 'Expected' metabolite.
g-S DipeptideHMDB
Glycine serine dipeptideHMDB
Glycine-serine dipeptideHMDB
GS DipeptideHMDB
Chemical FormulaC5H10N2O4
Average Molecular Weight162.1439
Monoisotopic Molecular Weight162.064056818
IUPAC Name2-[(2-amino-1-hydroxyethylidene)amino]-3-hydroxypropanoic acid
Traditional Name2-[(2-amino-1-hydroxyethylidene)amino]-3-hydroxypropanoic acid
CAS Registry NumberNot Available
InChI Identifier
Chemical Taxonomy
Description belongs to the class of organic compounds known as dipeptides. These are organic compounds containing a sequence of exactly two alpha-amino acids joined by a peptide bond.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassCarboxylic acids and derivatives
Sub ClassAmino acids, peptides, and analogues
Direct ParentDipeptides
Alternative Parents
  • Alpha-dipeptide
  • N-acyl-alpha-amino acid
  • N-acyl-alpha amino acid or derivatives
  • Alpha-amino acid amide
  • Serine or derivatives
  • Alpha-amino acid or derivatives
  • Beta-hydroxy acid
  • Hydroxy acid
  • Amino acid or derivatives
  • Carboxamide group
  • Amino acid
  • Secondary carboxylic acid amide
  • Monocarboxylic acid or derivatives
  • Carboxylic acid
  • Organonitrogen compound
  • Hydrocarbon derivative
  • Organic nitrogen compound
  • Primary aliphatic amine
  • Organic oxide
  • Carbonyl group
  • Organopnictogen compound
  • Alcohol
  • Amine
  • Organooxygen compound
  • Primary alcohol
  • Primary amine
  • Organic oxygen compound
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External DescriptorsNot Available

Biological location:


Physical Properties
Experimental Properties
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
Predicted Properties
Water Solubility90.4 g/LALOGPS
pKa (Strongest Acidic)3.24ChemAxon
pKa (Strongest Basic)9.33ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count6ChemAxon
Hydrogen Donor Count4ChemAxon
Polar Surface Area116.14 ŲChemAxon
Rotatable Bond Count4ChemAxon
Refractivity35.37 m³·mol⁻¹ChemAxon
Polarizability14.87 ųChemAxon
Number of Rings0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Spectrum TypeDescriptionSplash KeyView
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-053r-9200000000-b2494d0500a08f7f336cSpectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (2 TMS) - 70eV, Positivesplash10-05ai-9220000000-df6bcca25cfe64054730Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-01pk-3900000000-599fcd7bfd259475bb47Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-06si-9200000000-38f2248cbc569e3514e6Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0540-9000000000-afee88abcc5d77256b13Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-03di-0900000000-9d06d42ae09e7fcc4b21Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-02u4-5900000000-1267e576e73802417168Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0596-9100000000-e49e4472ba1d3b24e8cfSpectrum
Biological Properties
Cellular LocationsNot Available
Biospecimen Locations
  • Sweat
Tissue LocationsNot Available
Normal Concentrations
Not Available
Abnormal Concentrations
SweatDetected but not Quantified Infant (0-1 year old)Not Specifiedscreen-positive CF details
Associated Disorders and Diseases
Disease References
Cystic fibrosis
  1. Adriana Nori de Macedo. Robust capillary electrophoresis methods for biomarker discovery and routine measurements in clinical and epidemiological applications. March 2017 [Link]
Associated OMIM IDs
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDNot Available
KNApSAcK IDNot Available
Chemspider IDNot Available
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound102466
PDB IDNot Available
ChEBI IDNot Available
Food Biomarker OntologyNot Available
VMH IDNot Available
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Robinson JM, Hardman JK, Sloan GL: Relationship between lysostaphin endopeptidase production and cell wall composition in Staphylococcus staphylolyticus. J Bacteriol. 1979 Mar;137(3):1158-64. [PubMed:438117 ]
  2. Fujii Y, Kiss T, Gajda T, Tan XS, Sato T, Nakano Y, Hayashi Y, Yashiro M: Copper(II)- cis, cis-1,3,5-triaminocyclohexane complex-promoted hydrolysis of dipeptides: kinetic, speciation and structural studies. J Biol Inorg Chem. 2002 Sep;7(7-8):843-51. Epub 2002 Apr 30. [PubMed:12203021 ]
  3. Weber AL, Orgel LE: The formation of peptides from the 2'(3')-glycyl ester of a nucleotide. J Mol Evol. 1978 Aug 2;11(3):189-98. [PubMed:29132 ]
  4. Weber AL, Orgel LE: The formation of dipeptides from amino acids and the 2'(3')-glycyl ester of an adenylate. J Mol Evol. 1979 Oct;13(3):185-92. [PubMed:501742 ]
  5. Kucukhuseyin O, Yilmaz-Aydogan H, Isbir CS, Isbir T: Is there any association between GLY82 ser polymorphism of rage gene and Turkish diabetic and non diabetic patients with coronary artery disease? Mol Biol Rep. 2012 Apr;39(4):4423-8. doi: 10.1007/s11033-011-1230-3. Epub 2011 Sep 25. [PubMed:21947881 ]
  6. Wang DX, Lu GS, Liu W, Wang NG, Guan MZ, Zhao YL, Wang XN, Cheng ZP: [Synthesis of small peptides containing hydroxy-amino-acid, and its effects on progesterone production]. Yao Xue Xue Bao. 1991;26(1):25-9. [PubMed:1887790 ]
  7. Ho PH, Stroobants K, Parac-Vogt TN: Hydrolysis of serine-containing peptides at neutral pH promoted by [MoO4]2- oxyanion. Inorg Chem. 2011 Dec 5;50(23):12025-33. doi: 10.1021/ic2015034. Epub 2011 Oct 31. [PubMed:22040112 ]
  8. Olafsen T, Tan GJ, Cheung CW, Yazaki PJ, Park JM, Shively JE, Williams LE, Raubitschek AA, Press MF, Wu AM: Characterization of engineered anti-p185HER-2 (scFv-CH3)2 antibody fragments (minibodies) for tumor targeting. Protein Eng Des Sel. 2004 Apr;17(4):315-23. Epub 2004 Jun 8. [PubMed:15187222 ]
  9. Shiomi K, Yang H, Inokoshi J, Van der Pyl D, Nakagawa A, Takeshima H, Omura S: Pepticinnamins, new farnesyl-protein transferase inhibitors produced by an actinomycete. II. Structural elucidation of pepticinnamin E. J Antibiot (Tokyo). 1993 Feb;46(2):229-34. [PubMed:8468236 ]
  10. Buhl M: Density-functional study of vanadate-glycylserine isomers. J Inorg Biochem. 2000 May 30;80(1-2):137-9. [PubMed:10885474 ]
  11. Benz R, Francis G, Nakae T, Ferenci T: Investigation of the selectivity of maltoporin channels using mutant LamB proteins: mutations changing the maltodextrin binding site. Biochim Biophys Acta. 1992 Mar 2;1104(2):299-307. [PubMed:1547266 ]
  12. Toyoda T, Sakaguchi T, Imai K, Inocencio NM, Gotoh B, Hamaguchi M, Nagai Y: Structural comparison of the cleavage-activation site of the fusion glycoprotein between virulent and avirulent strains of Newcastle disease virus. Virology. 1987 May;158(1):242-7. [PubMed:3576973 ]
  13. Ho PH, Mihaylov T, Pierloot K, Parac-Vogt TN: Hydrolytic activity of vanadate toward serine-containing peptides studied by kinetic experiments and DFT theory. Inorg Chem. 2012 Aug 20;51(16):8848-59. doi: 10.1021/ic300761g. Epub 2012 Jul 30. [PubMed:22845736 ]
  14. Blagojevic V, Chramow A, Schneider BB, Covey TR, Bohme DK: Differential mobility spectrometry of isomeric protonated dipeptides: modifier and field effects on ion mobility and stability. Anal Chem. 2011 May 1;83(9):3470-6. doi: 10.1021/ac200100s. Epub 2011 Apr 19. [PubMed:21504141 ]
  15. Sahoo H, Roccatano D, Zacharias M, Nau WM: Distance distributions of short polypeptides recovered by fluorescence resonance energy transfer in the 10 A domain. J Am Chem Soc. 2006 Jun 28;128(25):8118-9. [PubMed:16787059 ]