Hmdb loader
Record Information
Version5.0
StatusExpected but not Quantified
Creation Date2012-09-11 20:00:04 UTC
Update Date2022-03-07 02:54:20 UTC
HMDB IDHMDB0035060
Secondary Accession Numbers
  • HMDB35060
Metabolite Identification
Common NameHovenoside G
DescriptionHovenoside G belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units. Based on a literature review a significant number of articles have been published on Hovenoside G.
Structure
Data?1563862658
Synonyms
ValueSource
(2R,3R,4R,5S)-6-Methylaminohexane-1,2,3,4,5-pentolHMDB
Gadolinium(+3) cationHMDB
Gadolinium-dtpaHMDB
Gadopentetate dimeglumineHMDB
GD-DtpaHMDB
MagnevistHMDB
Meglumine gadopentetateHMDB
Chemical FormulaC51H82O21
Average Molecular Weight1031.1842
Monoisotopic Molecular Weight1030.534859686
IUPAC Name2-({4,5-dihydroxy-2-[(5-hydroxy-2-{[16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-en-1-yl)-19,21-dioxahexacyclo[18.2.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0¹⁵,²⁰]tricosan-7-yl]oxy}-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-4-yl)oxy]-6-(hydroxymethyl)oxan-3-yl}oxy)oxane-3,4,5-triol
Traditional Name2-({4,5-dihydroxy-2-[(5-hydroxy-2-{[16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-en-1-yl)-19,21-dioxahexacyclo[18.2.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0¹⁵,²⁰]tricosan-7-yl]oxy}-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-4-yl)oxy]-6-(hydroxymethyl)oxan-3-yl}oxy)oxane-3,4,5-triol
CAS Registry Number55466-01-8
SMILES
CC(C)=CC1CC(C)(O)C2C3CCC4C5(C)CCC(OC6OCC(O)C(OC7OC(CO)C(O)C(O)C7OC7OCC(O)C(O)C7O)C6OC6OCC(O)C(O)C6O)C(C)(C)C5CCC4(C)C33COC2(C3)O1
InChI Identifier
InChI=1S/C51H82O21/c1-22(2)14-23-15-49(7,62)41-24-8-9-30-47(5)12-11-31(46(3,4)29(47)10-13-48(30,6)50(24)20-51(41,72-23)66-21-50)68-44-40(71-43-37(61)33(57)26(54)18-64-43)38(27(55)19-65-44)69-45-39(35(59)34(58)28(16-52)67-45)70-42-36(60)32(56)25(53)17-63-42/h14,23-45,52-62H,8-13,15-21H2,1-7H3
InChI KeyQVKNFOCNXKZPMO-UHFFFAOYSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassPrenol lipids
Sub ClassTriterpenoids
Direct ParentTriterpenoids
Alternative Parents
Substituents
  • Triterpenoid
  • Oligosaccharide
  • Steroid
  • Naphthopyran
  • Glycosyl compound
  • O-glycosyl compound
  • Naphthalene
  • Ketal
  • Oxane
  • Pyran
  • Tetrahydrofuran
  • Tertiary alcohol
  • Secondary alcohol
  • Polyol
  • Acetal
  • Organoheterocyclic compound
  • Oxacycle
  • Alcohol
  • Organooxygen compound
  • Hydrocarbon derivative
  • Organic oxygen compound
  • Primary alcohol
  • Aliphatic heteropolycyclic compound
Molecular FrameworkAliphatic heteropolycyclic compounds
External DescriptorsNot Available
Ontology
Physiological effectNot Available
Disposition
Process
Role
Physical Properties
StateNot Available
Experimental Molecular Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
PropertyValueSource
Water Solubility0.86 g/LALOGPS
logP0.11ALOGPS
logP-0.27ChemAxon
logS-3.1ALOGPS
pKa (Strongest Acidic)11.88ChemAxon
pKa (Strongest Basic)-3.5ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count21ChemAxon
Hydrogen Donor Count11ChemAxon
Polar Surface Area314.83 ŲChemAxon
Rotatable Bond Count10ChemAxon
Refractivity246.58 m³·mol⁻¹ChemAxon
Polarizability108.97 ųChemAxon
Number of Rings10ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleYesChemAxon
Predicted Chromatographic Properties

Predicted Collision Cross Sections

PredictorAdduct TypeCCS Value (Å2)Reference
DeepCCS[M-2H]-334.9130932474
DeepCCS[M+Na]+308.69330932474
AllCCS[M+H]+305.632859911
AllCCS[M+H-H2O]+306.032859911
AllCCS[M+NH4]+305.332859911
AllCCS[M+Na]+305.232859911
AllCCS[M-H]-257.132859911
AllCCS[M+Na-2H]-263.632859911
AllCCS[M+HCOO]-270.732859911

Predicted Kovats Retention Indices

Not Available
Spectra

MS/MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Hovenoside G 10V, Positive-QTOFsplash10-001i-6200600691-9aa1725e821ec55615732016-08-02Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Hovenoside G 20V, Positive-QTOFsplash10-0089-6200903750-448d27e07094dac06e322016-08-02Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Hovenoside G 40V, Positive-QTOFsplash10-0gir-7400914730-dcc1b3316263b408a7802016-08-02Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Hovenoside G 10V, Negative-QTOFsplash10-003r-9100100120-8676e223722bba2f7ce62016-08-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Hovenoside G 20V, Negative-QTOFsplash10-01ot-5902610661-d123e0bae5805f105e3b2016-08-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Hovenoside G 40V, Negative-QTOFsplash10-0002-6901301211-8be24122b4d5c937f2532016-08-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Hovenoside G 10V, Negative-QTOFsplash10-004i-9000000032-99ac4247987dacb1ef912021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Hovenoside G 20V, Negative-QTOFsplash10-056r-9300200046-5d2570c6ba08335eabdf2021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Hovenoside G 40V, Negative-QTOFsplash10-0006-9400030623-73e0a390f5d9c7b9f6942021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Hovenoside G 10V, Positive-QTOFsplash10-001i-9000300011-3040709f0e295c994cd22021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Hovenoside G 20V, Positive-QTOFsplash10-053r-8405900130-83ec26c97a5e0870ec622021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Hovenoside G 40V, Positive-QTOFsplash10-00ur-7961100103-af4f5e8a36b6dc61de712021-09-22Wishart LabView Spectrum

NMR Spectra

Spectrum TypeDescriptionDeposition DateSourceView
Predicted 1D NMR1H NMR Spectrum (1D, 100 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 100 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 1000 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 1000 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 200 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 200 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 300 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 300 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 400 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 400 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 500 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 500 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 600 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 600 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 700 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 700 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 800 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 800 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 900 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 900 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Membrane
Biospecimen LocationsNot Available
Tissue LocationsNot Available
Pathways
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB013683
KNApSAcK IDNot Available
Chemspider IDNot Available
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound85207142
PDB IDNot Available
ChEBI ID180856
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Shazeeb MS, Sotak CH, DeLeo M 3rd, Bogdanov A Jr: Targeted signal-amplifying enzymes enhance MRI of EGFR expression in an orthotopic model of human glioma. Cancer Res. 2011 Mar 15;71(6):2230-9. doi: 10.1158/0008-5472.CAN-10-1139. Epub 2011 Jan 18. [PubMed:21245103 ]
  2. Tiwari AK, Sinha D, Datta A, Kakkar D, Mishra AK: Kinetics of formation for lanthanide (III) complexes of DTPA-(Me-Trp)2 used as imaging agent. Chem Biol Drug Des. 2011 May;77(5):388-92. doi: 10.1111/j.1747-0285.2011.01103.x. Epub 2011 Mar 25. [PubMed:21332947 ]
  3. Yang Y, Dreessen de Gervai P, Sun J, Glogowski M, Gussakovsky E, Kupriyanov V: MRI studies of cryoinjury infarction in pig hearts: ii. Effects of intrapericardial delivery of adipose-derived stem cells (ADSC) embedded in agarose gel. NMR Biomed. 2012 Feb;25(2):227-35. doi: 10.1002/nbm.1735. Epub 2011 Jul 19. [PubMed:21774011 ]
  4. Sriram R, Lagerstedt JO, Petrlova J, Samardzic H, Kreutzer U, Xie H, Kaysen GA, Desreux JF, Thonon D, Jacques V, Van Loan M, Rutledge JC, Oda MN, Voss JC, Jue T: Imaging apolipoprotein AI in vivo. NMR Biomed. 2011 Aug;24(7):916-24. doi: 10.1002/nbm.1650. Epub 2011 Jan 24. [PubMed:21264979 ]
  5. Yang Y, Gruwel ML, Dreessen de Gervai P, Sun J, Jilkina O, Gussakovsky E, Kupriyanov V: MRI study of cryoinjury infarction in pig hearts: i. Effects of intrapericardial delivery of bFGF/VEGF embedded in alginate beads. NMR Biomed. 2012 Jan;25(1):177-88. doi: 10.1002/nbm.1736. Epub 2011 Sep 30. [PubMed:21960023 ]
  6. Martinez GV, Zhang X, Garcia-Martin ML, Morse DL, Woods M, Sherry AD, Gillies RJ: Imaging the extracellular pH of tumors by MRI after injection of a single cocktail of T1 and T2 contrast agents. NMR Biomed. 2011 Dec;24(10):1380-91. doi: 10.1002/nbm.1701. Epub 2011 May 23. [PubMed:21604311 ]
  7. Aychek T, Vandoorne K, Brenner O, Jung S, Neeman M: Quantitative analysis of intravenously administered contrast media reveals changes in vascular barrier functions in a murine colitis model. Magn Reson Med. 2011 Jul;66(1):235-43. doi: 10.1002/mrm.22798. Epub 2011 Jan 19. [PubMed:21254214 ]
  8. Bonnet CS, Fries PH: Paramagnetic relaxation enhancements in acetate and its fluorine derivatives interacting with Gd3+: complex formation, structure, and transmetallation. Chemphyschem. 2010 Nov 15;11(16):3474-84. doi: 10.1002/cphc.201000448. [PubMed:20979086 ]
  9. Kolodziej AF, Nair SA, Graham P, McMurry TJ, Ladner RC, Wescott C, Sexton DJ, Caravan P: Fibrin specific peptides derived by phage display: characterization of peptides and conjugates for imaging. Bioconjug Chem. 2012 Mar 21;23(3):548-56. doi: 10.1021/bc200613e. Epub 2012 Feb 9. [PubMed:22263840 ]
  10. Xia A, Chen M, Gao Y, Wu D, Feng W, Li F: Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-Ray computed tomography and magnetic resonance. Biomaterials. 2012 Jul;33(21):5394-405. doi: 10.1016/j.biomaterials.2012.04.025. Epub 2012 May 3. [PubMed:22560666 ]
  11. Han L, Li J, Huang S, Huang R, Liu S, Hu X, Yi P, Shan D, Wang X, Lei H, Jiang C: Peptide-conjugated polyamidoamine dendrimer as a nanoscale tumor-targeted T1 magnetic resonance imaging contrast agent. Biomaterials. 2011 Apr;32(11):2989-98. doi: 10.1016/j.biomaterials.2011.01.005. Epub 2011 Jan 28. [PubMed:21277017 ]
  12. Yang Y, de Gervai PD, Sun J, Gruwel ML, Kupriyanov V: Dynamic manganese-enhanced magnetic resonance imaging can detect chronic cryoinjury-induced infarction in pig hearts in vivo. Contrast Media Mol Imaging. 2011 Nov-Dec;6(6):426-36. doi: 10.1002/cmmi.438. [PubMed:22144020 ]
  13. Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
  14. Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
  15. Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
  16. Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
  17. (). Yannai, Shmuel. (2004) Dictionary of food compounds with CD-ROM: Additives, flavors, and ingredients. Boca Raton: Chapman & Hall/CRC.. .
  18. Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.