Hmdb loader
Record Information
Version5.0
StatusExpected but not Quantified
Creation Date2012-09-11 23:54:07 UTC
Update Date2022-03-07 02:55:49 UTC
HMDB IDHMDB0038578
Secondary Accession Numbers
  • HMDB38578
Metabolite Identification
Common NameChlorophyll a
DescriptionChlorophyll a is found in common wheat. Chlorophyll a is used in food processing as an appearance control agent for colours.Chlorophyll is a chlorin pigment, which is structurally similar to and produced through the same metabolic pathway as other porphyrin pigments such as heme. At the center of the chlorin ring is a magnesium ion. For the structures depicted in this article, some of the ligands attached to the Mg2+ center are omitted for clarity. The chlorin ring can have several different side chains, usually including a long phytol chain. There are a few different forms that occur naturally, but the most widely distributed form in terrestrial plants is chlorophyll a. The general structure of chlorophyll a was elucidated by Hans Fischer in 1940, and by 1960, when most of the stereochemistry of chlorophyll a was known, Robert Burns Woodward published a total synthesis of the molecule as then known. In 1967, the last remaining stereochemical elucidation was completed by Ian Fleming, and in 1990 Woodward and co-authors published an updated synthesis. Chlorophyll is a green pigment found in most plants, algae, and cyanobacteria. Its name is derived from the Greek (chloros "green") and (phyllon "leaf"). Chlorophyll absorbs light most strongly in the blue and red but poorly in the green portions of the electromagnetic spectrum, hence the green colour of chlorophyll-containing tissues such as plant leaves. Chlorophyll itself is bound to proteins and can transfer the absorbed energy in the required direction. Protochlorophyllide, differently, mostly occur in the free form and under light conditions act as photosensitizer, forming highly toxic free radicals. Hence plants need an efficient mechanism of regulating the amount of chlorophyll precursor. In angiosperms, this is done at the step of aminolevulinic acid (ALA), one of the intermediate compounds in the biosynthesis pathway. Plants that are fed by ALA accumulate high and toxic levels of protochlorophyllide, so do the mutants with the damaged regulatory system. Chlorosis is a condition in which leaves produce insufficient chlorophyll, turning them yellow. Chlorosis can be caused by a nutrient deficiency including iron - called iron chlorosis, or in a shortage of magnesium or nitrogen. Soil pH sometimes play a role in nutrient-caused chlorosis, many plants are adapted to grow in soils with specific pHs and their ability to absorb nutrients from the soil can be dependent on the soil pH. Chlorosis can also be caused by pathogens including viruses, bacteria and fungal infections or sap sucking insects
Structure
Data?1588882277
Synonyms
ValueSource
(SP-4-2)-((2E,7R,11R)-3,7,11,15-Tetramethyl-2-hexadecenyl (3S,4S,21R)-9-ethenyl-14-ethyl-21-(methoxycarbonyl)-4,8,13,18-tetramethyl-20-oxo-3-phorbinepropanoato(2-)-kappan(23),kappan(24),kappan(25),kappan(26))-magnesiumChEBI
ChlorophyllChEBI
Chlorophyll a2HMDB
Chemical FormulaC55H72MgN4O5
Average Molecular Weight893.509
Monoisotopic Molecular Weight892.53531313
IUPAC Name(5R,22S,23S)-17-ethenyl-12-ethyl-5-(methoxycarbonyl)-8,13,18,22-tetramethyl-6-oxo-23-(3-oxo-3-{[(2E,7R,11R)-3,7,11,15-tetramethylhexadec-2-en-1-yl]oxy}propyl)-2,25lambda5,26lambda5,27-tetraaza-1-magnesanonacyclo[12.11.1.1^{1,16}.0^{2,9}.0^{3,7}.0^{4,24}.0^{11,26}.0^{21,25}.0^{19,27}]heptacosa-3,7,9,11(26),12,14,16,18,20,24-decaene-25,26-bis(ylium)-1,1-diuide
Traditional Name(5R,22S,23S)-17-ethenyl-12-ethyl-5-(methoxycarbonyl)-8,13,18,22-tetramethyl-6-oxo-23-(3-oxo-3-{[(2E,7R,11R)-3,7,11,15-tetramethylhexadec-2-en-1-yl]oxy}propyl)-2,25lambda5,26lambda5,27-tetraaza-1-magnesanonacyclo[12.11.1.1^{1,16}.0^{2,9}.0^{3,7}.0^{4,24}.0^{11,26}.0^{21,25}.0^{19,27}]heptacosa-3,7,9,11(26),12,14,16,18,20,24-decaene-25,26-bis(ylium)-1,1-diuide
CAS Registry Number479-61-8
SMILES
CCC1=C(C)C2=CC3=C(C=C)C(C)=C4C=C5[C@@H](C)[C@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)C6=[N+]5[Mg--]5(N34)N3C(=CC1=[N+]25)C(C)=C1C(=O)[C@H](C(=O)OC)C6=C31
InChI Identifier
InChI=1S/C55H73N4O5.Mg/c1-13-39-35(8)42-28-44-37(10)41(24-25-48(60)64-27-26-34(7)23-17-22-33(6)21-16-20-32(5)19-15-18-31(3)4)52(58-44)50-51(55(62)63-12)54(61)49-38(11)45(59-53(49)50)30-47-40(14-2)36(9)43(57-47)29-46(39)56-42;/h13,26,28-33,37,41,51H,1,14-25,27H2,2-12H3,(H-,56,57,58,59,61);/q-1;+2/p-1/b34-26+;/t32-,33-,37+,41+,51-;/m1./s1
InChI KeyATNHDLDRLWWWCB-AENOIHSZSA-M
Chemical Taxonomy
Description Belongs to the class of organic compounds known as chlorins. These are large heterocyclic aromatic ring systems consisting, at the core, of three pyrroles and one pyrroline coupled through four methine linkages.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassTetrapyrroles and derivatives
Sub ClassChlorins
Direct ParentChlorins
Alternative Parents
Substituents
  • Chlorin
  • Metallotetrapyrrole skeleton
  • Phorbine skeleton
  • Diterpenoid
  • Aryl ketone
  • Aryl alkyl ketone
  • Fatty acid ester
  • Dicarboxylic acid or derivatives
  • Substituted pyrrole
  • 1,3-dicarbonyl compound
  • Fatty acyl
  • Heteroaromatic compound
  • Methyl ester
  • Pyrrole
  • Carboxylic acid ester
  • Ketone
  • Azacycle
  • Carboxylic acid derivative
  • Organooxygen compound
  • Organonitrogen compound
  • Hydrocarbon derivative
  • Organic salt
  • Organic oxide
  • Organic oxygen compound
  • Organic nitrogen compound
  • Organic zwitterion
  • Carbonyl group
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Ontology
Physiological effectNot Available
Disposition
Biological locationSource