Hmdb loader
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2022-03-07 02:49:24 UTC
HMDB IDHMDB0004950
Secondary Accession Numbers
  • HMDB0000829
  • HMDB00829
  • HMDB04950
Metabolite Identification
Common NameCer(d18:1/18:0)
DescriptionN-Stearoylsphingosine belongs to the group of compounds known as ceramides. Ceramides (N-acylsphingosine) are one of the hydrolysis byproducts of sphingomyelin by the enzyme sphingomyelinase (sphingomyelin phosphorylcholine phosphohydrolase E.C.3.1.4.12) which has been identified in the subcellular fractions of human epidermis (PMID 25935 ) and many other tissues. They can also be synthesized from serine and palmitate in a de novo pathway and are regarded as important cellular signals for inducing apoptosis (PMID 14998372 ). N-acylsphingosine is key in the biosynthesis of glycosphingolipids and gangliosides.
Structure
Data?1591985138
Synonyms
ValueSource
C18 CerChEBI
Cer(d18:1/18:0)ChEBI
N-(Octadecanoyl)-sphing-4-enineChEBI, HMDB
N-(Octadecanoyl)ceramideChEBI
N-(Octadecanoyl)sphing-4-enineChEBI
N-(Stearoyl)ceramideChEBI
N-Octadecanoylsphing-4-enineChEBI
N-Stearoylsphing-4-enineChEBI
N-StearoylsphingosineChEBI
(2S,3R,4E)-2-acylamino-1,3-Octadec-4-enediolHMDB
(2S,3R,4E)-2-Acylaminooctadec-4-ene-1,3-diolHMDB
CerHMDB
CeramideHMDB
N-AcylsphingosineHMDB
N-[(1S,2R,3E)-2-Hydroxy-1-(hydroxymethyl)-3-heptadecenyl]-octadecanamideHMDB
C18-CeramideHMDB
C18:0 CeramideHMDB
Cer d18:1/18:0HMDB
Ceramide (d18:1,C18:0)HMDB
Ceramide (d18:1/18:0)HMDB
Ceramide (d18:1C18:0)HMDB
Ceramide 18HMDB
Ceramide(d18:1/18:0)HMDB
D-erythro-1,3-Dihydroxy-2-octadecanoylamido-trans-4-octadeceneHMDB
N-OctadecanoylsphingosineHMDB
N-Stearoyl-C18-sphingosineHMDB
N-Stearoyl-D-erythro-sphingosineHMDB
N-Stearoyl-D-sphingosineHMDB
N-StearoylsphingenineHMDB
Chemical FormulaC36H71NO3
Average Molecular Weight565.9538
Monoisotopic Molecular Weight565.543395143
IUPAC NameN-[(2S,3R,4E)-1,3-dihydroxyoctadec-4-en-2-yl]octadecanamide
Traditional NameC18 cer
CAS Registry Number2304-81-6
SMILES
[H][C@@](CO)(NC(=O)CCCCCCCCCCCCCCCCC)[C@H](O)\C=C\CCCCCCCCCCCCC
InChI Identifier
InChI=1S/C36H71NO3/c1-3-5-7-9-11-13-15-17-18-20-22-24-26-28-30-32-36(40)37-34(33-38)35(39)31-29-27-25-23-21-19-16-14-12-10-8-6-4-2/h29,31,34-35,38-39H,3-28,30,32-33H2,1-2H3,(H,37,40)/b31-29+/t34-,35+/m0/s1
InChI KeyVODZWWMEJITOND-NXCSZAMKSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as long-chain ceramides. These are ceramides bearing a long chain fatty acid.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassSphingolipids
Sub ClassCeramides
Direct ParentLong-chain ceramides
Alternative Parents
Substituents
  • Long-chain ceramide
  • Fatty amide
  • N-acyl-amine
  • Fatty acyl
  • Carboxamide group
  • Secondary alcohol
  • Secondary carboxylic acid amide
  • Carboxylic acid derivative
  • Primary alcohol
  • Organooxygen compound
  • Organonitrogen compound
  • Organic oxide
  • Organopnictogen compound
  • Organic oxygen compound
  • Alcohol
  • Organic nitrogen compound
  • Carbonyl group
  • Hydrocarbon derivative
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
Physiological effect
Disposition
Biological locationRoute of exposureSource
Process
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water Solubility0Not Available
LogPNot AvailableNot Available
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
PropertyValueSource
Water Solubility3.2e-05 g/LALOGPS
logP9.78ALOGPS
logP11.75ChemAxon
logS-7.2ALOGPS
pKa (Strongest Acidic)13.62ChemAxon
pKa (Strongest Basic)-1ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area69.56 ŲChemAxon
Rotatable Bond Count32ChemAxon
Refractivity174.98 m³·mol⁻¹ChemAxon
Polarizability77.47 ųChemAxon
Number of Rings0ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Predicted Chromatographic Properties

Predicted Collision Cross Sections

PredictorAdduct TypeCCS Value (Å2)Reference
DarkChem[M+H]+249.85931661259
DarkChem[M-H]-239.12531661259
DeepCCS[M+H]+247.8930932474
DeepCCS[M-H]-245.46330932474
DeepCCS[M-2H]-279.82730932474
DeepCCS[M+Na]+255.26430932474
AllCCS[M+H]+263.332859911
AllCCS[M+H-H2O]+262.732859911
AllCCS[M+NH4]+263.932859911
AllCCS[M+Na]+264.032859911
AllCCS[M-H]-247.632859911
AllCCS[M+Na-2H]-251.332859911
AllCCS[M+HCOO]-255.532859911

Predicted Kovats Retention Indices

Derivatized

Derivative Name / StructureSMILESKovats RI ValueColumn TypeReference
Cer(d18:1/18:0),1TMS,isomer #1CCCCCCCCCCCCC/C=C/[C@@H](O)[C@H](CO[Si](C)(C)C)NC(=O)CCCCCCCCCCCCCCCCC4292.3Semi standard non polar33892256
Cer(d18:1/18:0),1TMS,isomer #1CCCCCCCCCCCCC/C=C/[C@@H](O)[C@H](CO[Si](C)(C)C)NC(=O)CCCCCCCCCCCCCCCCC4171.4Standard non polar33892256
Cer(d18:1/18:0),1TMS,isomer #1CCCCCCCCCCCCC/C=C/[C@@H](O)[C@H](CO[Si](C)(C)C)NC(=O)CCCCCCCCCCCCCCCCC4860.1Standard polar33892256
Cer(d18:1/18:0),1TMS,isomer #2CCCCCCCCCCCCC/C=C/[C@@H](O[Si](C)(C)C)[C@H](CO)NC(=O)CCCCCCCCCCCCCCCCC4333.5Semi standard non polar33892256
Cer(d18:1/18:0),1TMS,isomer #2CCCCCCCCCCCCC/C=C/[C@@H](O[Si](C)(C)C)[C@H](CO)NC(=O)CCCCCCCCCCCCCCCCC4104.7Standard non polar33892256
Cer(d18:1/18:0),1TMS,isomer #2CCCCCCCCCCCCC/C=C/[C@@H](O[Si](C)(C)C)[C@H](CO)NC(=O)CCCCCCCCCCCCCCCCC4613.2Standard polar33892256
Cer(d18:1/18:0),1TMS,isomer #3CCCCCCCCCCCCC/C=C/[C@@H](O)[C@H](CO)N(C(=O)CCCCCCCCCCCCCCCCC)[Si](C)(C)C4211.6Semi standard non polar33892256
Cer(d18:1/18:0),1TMS,isomer #3CCCCCCCCCCCCC/C=C/[C@@H](O)[C@H](CO)N(C(=O)CCCCCCCCCCCCCCCCC)[Si](C)(C)C4120.6Standard non polar33892256
Cer(d18:1/18:0),1TMS,isomer #3CCCCCCCCCCCCC/C=C/[C@@H](O)[C@H](CO)N(C(=O)CCCCCCCCCCCCCCCCC)[Si](C)(C)C4820.6Standard polar33892256
Cer(d18:1/18:0),2TMS,isomer #1CCCCCCCCCCCCC/C=C/[C@@H](O[Si](C)(C)C)[C@H](CO[Si](C)(C)C)NC(=O)CCCCCCCCCCCCCCCCC4307.8Semi standard non polar33892256
Cer(d18:1/18:0),2TMS,isomer #1CCCCCCCCCCCCC/C=C/[C@@H](O[Si](C)(C)C)[C@H](CO[Si](C)(C)C)NC(=O)CCCCCCCCCCCCCCCCC4033.4Standard non polar33892256
Cer(d18:1/18:0),2TMS,isomer #1CCCCCCCCCCCCC/C=C/[C@@H](O[Si](C)(C)C)[C@H](CO[Si](C)(C)C)NC(=O)CCCCCCCCCCCCCCCCC4311.5Standard polar33892256
Cer(d18:1/18:0),2TMS,isomer #2CCCCCCCCCCCCC/C=C/[C@@H](O)[C@H](CO[Si](C)(C)C)N(C(=O)CCCCCCCCCCCCCCCCC)[Si](C)(C)C4242.5Semi standard non polar33892256
Cer(d18:1/18:0),2TMS,isomer #2CCCCCCCCCCCCC/C=C/[C@@H](O)[C@H](CO[Si](C)(C)C)N(C(=O)CCCCCCCCCCCCCCCCC)[Si](C)(C)C4105.4Standard non polar33892256
Cer(d18:1/18:0),2TMS,isomer #2CCCCCCCCCCCCC/C=C/[C@@H](O)[C@H](CO[Si](C)(C)C)N(C(=O)CCCCCCCCCCCCCCCCC)[Si](C)(C)C4566.7Standard polar33892256
Cer(d18:1/18:0),2TMS,isomer #3CCCCCCCCCCCCC/C=C/[C@@H](O[Si](C)(C)C)[C@H](CO)N(C(=O)CCCCCCCCCCCCCCCCC)[Si](C)(C)C4285.9Semi standard non polar33892256
Cer(d18:1/18:0),2TMS,isomer #3CCCCCCCCCCCCC/C=C/[C@@H](O[Si](C)(C)C)[C@H](CO)N(C(=O)CCCCCCCCCCCCCCCCC)[Si](C)(C)C4040.5Standard non polar33892256
Cer(d18:1/18:0),2TMS,isomer #3CCCCCCCCCCCCC/C=C/[C@@H](O[Si](C)(C)C)[C@H](CO)N(C(=O)CCCCCCCCCCCCCCCCC)[Si](C)(C)C4324.5Standard polar33892256
Cer(d18:1/18:0),3TMS,isomer #1CCCCCCCCCCCCC/C=C/[C@@H](O[Si](C)(C)C)[C@H](CO[Si](C)(C)C)N(C(=O)CCCCCCCCCCCCCCCCC)[Si](C)(C)C4284.4Semi standard non polar33892256
Cer(d18:1/18:0),3TMS,isomer #1CCCCCCCCCCCCC/C=C/[C@@H](O[Si](C)(C)C)[C@H](CO[Si](C)(C)C)N(C(=O)CCCCCCCCCCCCCCCCC)[Si](C)(C)C4020.8Standard non polar33892256
Cer(d18:1/18:0),3TMS,isomer #1CCCCCCCCCCCCC/C=C/[C@@H](O[Si](C)(C)C)[C@H](CO[Si](C)(C)C)N(C(=O)CCCCCCCCCCCCCCCCC)[Si](C)(C)C4090.5Standard polar33892256
Cer(d18:1/18:0),1TBDMS,isomer #1CCCCCCCCCCCCC/C=C/[C@@H](O)[C@H](CO[Si](C)(C)C(C)(C)C)NC(=O)CCCCCCCCCCCCCCCCC4552.0Semi standard non polar33892256
Cer(d18:1/18:0),1TBDMS,isomer #1CCCCCCCCCCCCC/C=C/[C@@H](O)[C@H](CO[Si](C)(C)C(C)(C)C)NC(=O)CCCCCCCCCCCCCCCCC4308.7Standard non polar33892256
Cer(d18:1/18:0),1TBDMS,isomer #1CCCCCCCCCCCCC/C=C/[C@@H](O)[C@H](CO[Si](C)(C)C(C)(C)C)NC(=O)CCCCCCCCCCCCCCCCC4820.0Standard polar33892256
Cer(d18:1/18:0),1TBDMS,isomer #2CCCCCCCCCCCCC/C=C/[C@@H](O[Si](C)(C)C(C)(C)C)[C@H](CO)NC(=O)CCCCCCCCCCCCCCCCC4574.3Semi standard non polar33892256
Cer(d18:1/18:0),1TBDMS,isomer #2CCCCCCCCCCCCC/C=C/[C@@H](O[Si](C)(C)C(C)(C)C)[C@H](CO)NC(=O)CCCCCCCCCCCCCCCCC4232.2Standard non polar33892256
Cer(d18:1/18:0),1TBDMS,isomer #2CCCCCCCCCCCCC/C=C/[C@@H](O[Si](C)(C)C(C)(C)C)[C@H](CO)NC(=O)CCCCCCCCCCCCCCCCC4604.0Standard polar33892256
Cer(d18:1/18:0),1TBDMS,isomer #3CCCCCCCCCCCCC/C=C/[C@@H](O)[C@H](CO)N(C(=O)CCCCCCCCCCCCCCCCC)[Si](C)(C)C(C)(C)C4457.6Semi standard non polar33892256
Cer(d18:1/18:0),1TBDMS,isomer #3CCCCCCCCCCCCC/C=C/[C@@H](O)[C@H](CO)N(C(=O)CCCCCCCCCCCCCCCCC)[Si](C)(C)C(C)(C)C4259.0Standard non polar33892256
Cer(d18:1/18:0),1TBDMS,isomer #3CCCCCCCCCCCCC/C=C/[C@@H](O)[C@H](CO)N(C(=O)CCCCCCCCCCCCCCCCC)[Si](C)(C)C(C)(C)C4780.3Standard polar33892256
Cer(d18:1/18:0),2TBDMS,isomer #1CCCCCCCCCCCCC/C=C/[C@@H](O[Si](C)(C)C(C)(C)C)[C@H](CO[Si](C)(C)C(C)(C)C)NC(=O)CCCCCCCCCCCCCCCCC4821.8Semi standard non polar33892256
Cer(d18:1/18:0),2TBDMS,isomer #1CCCCCCCCCCCCC/C=C/[C@@H](O[Si](C)(C)C(C)(C)C)[C@H](CO[Si](C)(C)C(C)(C)C)NC(=O)CCCCCCCCCCCCCCCCC4267.3Standard non polar33892256
Cer(d18:1/18:0),2TBDMS,isomer #1CCCCCCCCCCCCC/C=C/[C@@H](O[Si](C)(C)C(C)(C)C)[C@H](CO[Si](C)(C)C(C)(C)C)NC(=O)CCCCCCCCCCCCCCCCC4398.7Standard polar33892256
Cer(d18:1/18:0),2TBDMS,isomer #2CCCCCCCCCCCCC/C=C/[C@@H](O)[C@H](CO[Si](C)(C)C(C)(C)C)N(C(=O)CCCCCCCCCCCCCCCCC)[Si](C)(C)C(C)(C)C4724.0Semi standard non polar33892256
Cer(d18:1/18:0),2TBDMS,isomer #2CCCCCCCCCCCCC/C=C/[C@@H](O)[C@H](CO[Si](C)(C)C(C)(C)C)N(C(=O)CCCCCCCCCCCCCCCCC)[Si](C)(C)C(C)(C)C4333.9Standard non polar33892256
Cer(d18:1/18:0),2TBDMS,isomer #2CCCCCCCCCCCCC/C=C/[C@@H](O)[C@H](CO[Si](C)(C)C(C)(C)C)N(C(=O)CCCCCCCCCCCCCCCCC)[Si](C)(C)C(C)(C)C4617.3Standard polar33892256
Cer(d18:1/18:0),2TBDMS,isomer #3CCCCCCCCCCCCC/C=C/[C@@H](O[Si](C)(C)C(C)(C)C)[C@H](CO)N(C(=O)CCCCCCCCCCCCCCCCC)[Si](C)(C)C(C)(C)C4741.0Semi standard non polar33892256
Cer(d18:1/18:0),2TBDMS,isomer #3CCCCCCCCCCCCC/C=C/[C@@H](O[Si](C)(C)C(C)(C)C)[C@H](CO)N(C(=O)CCCCCCCCCCCCCCCCC)[Si](C)(C)C(C)(C)C4285.8Standard non polar33892256
Cer(d18:1/18:0),2TBDMS,isomer #3CCCCCCCCCCCCC/C=C/[C@@H](O[Si](C)(C)C(C)(C)C)[C@H](CO)N(C(=O)CCCCCCCCCCCCCCCCC)[Si](C)(C)C(C)(C)C4425.2Standard polar33892256
Spectra

GC-MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted GC-MSPredicted GC-MS Spectrum - Cer(d18:1/18:0) GC-MS (1 TMS) - 70eV, Positivesplash10-00dj-4095356000-87cc327998a6d64728a42017-10-06Wishart LabView Spectrum

MS/MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Experimental LC-MS/MSLC-MS/MS Spectrum - Cer(d18:1/18:0) 20V, Positive-QTOFsplash10-03di-0090020000-5dbb731616fc561ff3452021-09-20HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Cer(d18:1/18:0) 20V, Positive-QTOFsplash10-03di-0090020000-9c6e9b32b7c3fa0e10492021-09-20HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Cer(d18:1/18:0) 20V, Positive-QTOFsplash10-03di-0090020000-2a5e768c223d741f77b22021-09-20HMDB team, MONAView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Cer(d18:1/18:0) 10V, Positive-QTOFsplash10-014i-0000090000-3f6fc7446d90939e12732017-10-04Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Cer(d18:1/18:0) 20V, Positive-QTOFsplash10-02t9-0050090000-a5eb5a9f2cf3055ba7f22017-10-04Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Cer(d18:1/18:0) 40V, Positive-QTOFsplash10-03ea-0090060000-096de6b49933a090b7ec2017-10-04Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Cer(d18:1/18:0) 10V, Positive-QTOFsplash10-014i-0000090000-43d072bc5cc322f0fa162021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Cer(d18:1/18:0) 20V, Positive-QTOFsplash10-02t9-0050090000-75055536ca965f7e82e02021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Cer(d18:1/18:0) 40V, Positive-QTOFsplash10-03ea-0090060000-ed3377f4acd9152fde4e2021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Cer(d18:1/18:0) 10V, Positive-QTOFsplash10-00di-0000090000-f10a550f2e2a2d4ae2292021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Cer(d18:1/18:0) 20V, Positive-QTOFsplash10-00di-0000090000-f10a550f2e2a2d4ae2292021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Cer(d18:1/18:0) 40V, Positive-QTOFsplash10-0udi-0000090000-c884de12768fecb720bc2021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Cer(d18:1/18:0) 10V, Negative-QTOFsplash10-03di-0000090000-db9bd905dcb3573a1e452021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Cer(d18:1/18:0) 20V, Negative-QTOFsplash10-03di-0010090000-b852288502fd9c90e8b62021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Cer(d18:1/18:0) 40V, Negative-QTOFsplash10-01q9-0040090000-0a5784a1c56b4020c3b92021-09-22Wishart LabView Spectrum
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biospecimen Locations
  • Blood
  • Feces
  • Urine
Tissue Locations
  • Brain
  • Epidermis
  • Fibroblasts
  • Intestine
  • Kidney
  • Liver
  • Neuron
  • Pancreas
  • Placenta
  • Platelet
  • Skeletal Muscle
  • Spleen
  • Testis
  • Thyroid Gland
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified0.022 +/- 0.001 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified0.128 +/- 0.012 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified0.040 +/- 0.002 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified0.145 +/- 0.007 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified1.22 +/- 0.046 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified0.281 +/- 0.033 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified1.00 +/- 0.029 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified3.00 +/- 0.107 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified0.271 +/- 0.013 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified0.036 +/- 0.002 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified0.061 +/- 0.0007 uMAdult (>18 years old)BothNormal details
BloodDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothNormal details
BloodDetected and Quantified0.012 +/- 0.001 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified0.331 +/- 0.029 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified0.008 +/- 0.001 uMAdult (>18 years old)BothNormal details
UrineDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothNormal details
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothColorectal Cancer details
Associated Disorders and Diseases
Disease References
Colorectal cancer
  1. Brown DG, Rao S, Weir TL, O'Malia J, Bazan M, Brown RJ, Ryan EP: Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016 Jun 6;4:11. doi: 10.1186/s40170-016-0151-y. eCollection 2016. [PubMed:27275383 ]
Associated OMIM IDs
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB023537
KNApSAcK IDNot Available
Chemspider ID4446678
KEGG Compound IDC00195
BioCyc IDCERAMIDE
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN ID7203
PubChem Compound5283565
PDB ID18C
ChEBI ID72961
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis ReferenceJulina, Radomir; Herzig, Thomas; Bernet, Bruno; Vasella, Andrea. Enantioselective synthesis of D-erythro-sphingosine and of ceramide. Helvetica Chimica Acta (1986), 69(2), 368-73.
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Erdreich-Epstein A, Tran LB, Cox OT, Huang EY, Laug WE, Shimada H, Millard M: Endothelial apoptosis induced by inhibition of integrins alphavbeta3 and alphavbeta5 involves ceramide metabolic pathways. Blood. 2005 Jun 1;105(11):4353-61. Epub 2005 Feb 10. [PubMed:15705795 ]
  2. Guchhait P, Lopez JA, Thiagarajan P: Characterization of autoantibodies against sulfatide from a V-gene phage-display library derived from patients with systemic lupus erythematosus. J Immunol Methods. 2004 Dec;295(1-2):129-37. Epub 2004 Oct 26. [PubMed:15627618 ]
  3. Ogawa-Goto K, Ohta Y, Kubota K, Funamoto N, Abe T, Taki T, Nagashima K: Glycosphingolipids of human peripheral nervous system myelins isolated from cauda equina. J Neurochem. 1993 Oct;61(4):1398-403. [PubMed:7690848 ]
  4. Deguchi H, Yegneswaran S, Griffin JH: Sphingolipids as bioactive regulators of thrombin generation. J Biol Chem. 2004 Mar 26;279(13):12036-42. Epub 2004 Jan 13. [PubMed:14722105 ]
  5. Hoffmann GF, Seppel CK, Holmes B, Mitchell L, Christen HJ, Hanefeld F, Rating D, Nyhan WL: Quantitative organic acid analysis in cerebrospinal fluid and plasma: reference values in a pediatric population. J Chromatogr. 1993 Jul 23;617(1):1-10. [PubMed:8376520 ]
  6. Holleran WM, Ginns EI, Menon GK, Grundmann JU, Fartasch M, McKinney CE, Elias PM, Sidransky E: Consequences of beta-glucocerebrosidase deficiency in epidermis. Ultrastructure and permeability barrier alterations in Gaucher disease. J Clin Invest. 1994 Apr;93(4):1756-64. [PubMed:8163674 ]
  7. Saito M, Saito M, Cooper TB, Vadasz C: Ethanol-induced changes in the content of triglycerides, ceramides, and glucosylceramides in cultured neurons. Alcohol Clin Exp Res. 2005 Aug;29(8):1374-83. [PubMed:16131844 ]
  8. Garcia-Ruiz C, Mari M, Morales A, Colell A, Ardite E, Fernandez-Checa JC: Human placenta sphingomyelinase, an exogenous acidic pH-optimum sphingomyelinase, induces oxidative stress, glutathione depletion, and apoptosis in rat hepatocytes. Hepatology. 2000 Jul;32(1):56-65. [PubMed:10869289 ]
  9. van Lijnschoten G, Groener JE, Maas SM, Ben-Yoseph Y, Dingemans KP, Offerhaus GJ: Intrauterine fetal death due to Farber disease: case report. Pediatr Dev Pathol. 2000 Nov-Dec;3(6):597-602. [PubMed:11000338 ]
  10. Maurer BJ, Melton L, Billups C, Cabot MC, Reynolds CP: Synergistic cytotoxicity in solid tumor cell lines between N-(4-hydroxyphenyl)retinamide and modulators of ceramide metabolism. J Natl Cancer Inst. 2000 Dec 6;92(23):1897-909. [PubMed:11106681 ]
  11. Poliak S, Gollan L, Salomon D, Berglund EO, Ohara R, Ranscht B, Peles E: Localization of Caspr2 in myelinated nerves depends on axon-glia interactions and the generation of barriers along the axon. J Neurosci. 2001 Oct 1;21(19):7568-75. [PubMed:11567047 ]
  12. Kirby RJ, Zheng S, Tso P, Howles PN, Hui DY: Bile salt-stimulated carboxyl ester lipase influences lipoprotein assembly and secretion in intestine: a process mediated via ceramide hydrolysis. J Biol Chem. 2002 Feb 8;277(6):4104-9. Epub 2001 Dec 3. [PubMed:11733511 ]
  13. Bouwstra JA, Honeywell-Nguyen PL, Gooris GS, Ponec M: Structure of the skin barrier and its modulation by vesicular formulations. Prog Lipid Res. 2003 Jan;42(1):1-36. [PubMed:12467638 ]
  14. Adams JM 2nd, Pratipanawatr T, Berria R, Wang E, DeFronzo RA, Sullards MC, Mandarino LJ: Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes. 2004 Jan;53(1):25-31. [PubMed:14693694 ]
  15. Mari M, Colell A, Morales A, Paneda C, Varela-Nieto I, Garcia-Ruiz C, Fernandez-Checa JC: Acidic sphingomyelinase downregulates the liver-specific methionine adenosyltransferase 1A, contributing to tumor necrosis factor-induced lethal hepatitis. J Clin Invest. 2004 Mar;113(6):895-904. [PubMed:15067322 ]
  16. Helge JW, Dobrzyn A, Saltin B, Gorski J: Exercise and training effects on ceramide metabolism in human skeletal muscle. Exp Physiol. 2004 Jan;89(1):119-27. [PubMed:15109217 ]
  17. Jana A, Pahan K: Human immunodeficiency virus type 1 gp120 induces apoptosis in human primary neurons through redox-regulated activation of neutral sphingomyelinase. J Neurosci. 2004 Oct 27;24(43):9531-40. [PubMed:15509740 ]
  18. Yatomi Y, Yamamura S, Hisano N, Nakahara K, Igarashi Y, Ozaki Y: Sphingosine 1-phosphate breakdown in platelets. J Biochem. 2004 Oct;136(4):495-502. [PubMed:15625319 ]
  19. Chavez JA, Holland WL, Bar J, Sandhoff K, Summers SA: Acid ceramidase overexpression prevents the inhibitory effects of saturated fatty acids on insulin signaling. J Biol Chem. 2005 May 20;280(20):20148-53. Epub 2005 Mar 17. [PubMed:15774472 ]
  20. Petrache I, Natarajan V, Zhen L, Medler TR, Richter AT, Cho C, Hubbard WC, Berdyshev EV, Tuder RM: Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. Nat Med. 2005 May;11(5):491-8. Epub 2005 Apr 24. [PubMed:15852018 ]
  21. Demarchi F, Bertoli C, Greer PA, Schneider C: Ceramide triggers an NF-kappaB-dependent survival pathway through calpain. Cell Death Differ. 2005 May;12(5):512-22. [PubMed:15933726 ]
  22. Klein J: Functions and pathophysiological roles of phospholipase D in the brain. J Neurochem. 2005 Sep;94(6):1473-87. Epub 2005 Jul 22. [PubMed:16042758 ]
  23. Ogawa-Goto K, Funamoto N, Abe T, Nagashima K: Different ceramide compositions of gangliosides between human motor and sensory nerves. J Neurochem. 1990 Nov;55(5):1486-93. [PubMed:2213006 ]
  24. Ghadially R, Brown BE, Sequeira-Martin SM, Feingold KR, Elias PM: The aged epidermal permeability barrier. Structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model. J Clin Invest. 1995 May;95(5):2281-90. [PubMed:7738193 ]
  25. Marchesini S, Demasi L, Cestone P, Preti A, Agmon V, Dagan A, Navon R, Gatt S: Sulforhodamine GM1-ganglioside: synthesis and physicochemical properties. Chem Phys Lipids. 1994 Aug 8;72(2):143-52. [PubMed:7954976 ]
  26. Tojo K, Oota M, Honda H, Shibasaki T, Sakai O: Possible thyroidal involvement in a case of Fabry disease. Intern Med. 1994 Mar;33(3):172-6. [PubMed:8061397 ]
  27. Schafer A, Harzer K, Kattner E, Schafer HJ, Stoltenburg G, Lietz H: [Disseminated lipogranulomatosis (Farber disease) with hydrops fetalis]. Pathologe. 1996 Mar;17(2):145-9. [PubMed:8650144 ]
  28. Sando GN, Howard EJ, Madison KC: Induction of ceramide glucosyltransferase activity in cultured human keratinocytes. Correlation with culture differentiation. J Biol Chem. 1996 Sep 6;271(36):22044-51. [PubMed:8703011 ]
  29. Dunn HG, Dolman CL, Farrell DF, Tischler B, Hasinoff C, Woolf LI: Krabbe's leukodystrophy without globoid cells. Neurology. 1976 Nov;26(11):1035-41. [PubMed:988509 ]
  30. Bowser PA, Gray GM: Sphingomyelinase in pig and human epidermis. J Invest Dermatol. 1978 Jun;70(6):331-5. [PubMed:25935 ]
  31. Watanabe R, Wu K, Paul P, Marks DL, Kobayashi T, Pittelkow MR, Pagano RE: Up-regulation of glucosylceramide synthase expression and activity during human keratinocyte differentiation. J Biol Chem. 1998 Apr 17;273(16):9651-5. [PubMed:9545298 ]
  32. Ohnishi Y, Okino N, Ito M, Imayama S: Ceramidase activity in bacterial skin flora as a possible cause of ceramide deficiency in atopic dermatitis. Clin Diagn Lab Immunol. 1999 Jan;6(1):101-4. [PubMed:9874672 ]
  33. Humbert P: [Functional consequences of cutaneous lipid perturbation]. Pathol Biol (Paris). 2003 Jul;51(5):271-4. [PubMed:14567193 ]
  34. Cho Y, Lew BL, Seong K, Kim NI: An inverse relationship between ceramide synthesis and clinical severity in patients with psoriasis. J Korean Med Sci. 2004 Dec;19(6):859-63. [PubMed:15608398 ]
  35. Uchida Y, Behne M, Quiec D, Elias PM, Holleran WM: Vitamin C stimulates sphingolipid production and markers of barrier formation in submerged human keratinocyte cultures. J Invest Dermatol. 2001 Nov;117(5):1307-13. [PubMed:11710949 ]
  36. Pettus BJ, Baes M, Busman M, Hannun YA, Van Veldhoven PP: Mass spectrometric analysis of ceramide perturbations in brain and fibroblasts of mice and human patients with peroxisomal disorders. Rapid Commun Mass Spectrom. 2004;18(14):1569-74. [PubMed:15282781 ]
  37. Okamoto R, Arikawa J, Ishibashi M, Kawashima M, Takagi Y, Imokawa G: Sphingosylphosphorylcholine is upregulated in the stratum corneum of patients with atopic dermatitis. J Lipid Res. 2003 Jan;44(1):93-102. [PubMed:12518027 ]
  38. Lew BL, Cho Y, Kim J, Sim WY, Kim NI: Ceramides and cell signaling molecules in psoriatic epidermis: reduced levels of ceramides, PKC-alpha, and JNK. J Korean Med Sci. 2006 Feb;21(1):95-9. [PubMed:16479073 ]
  39. Grether-Beck S, Bonizzi G, Schmitt-Brenden H, Felsner I, Timmer A, Sies H, Johnson JP, Piette J, Krutmann J: Non-enzymatic triggering of the ceramide signalling cascade by solar UVA radiation. EMBO J. 2000 Nov 1;19(21):5793-800. [PubMed:11060030 ]
  40. Satoi H, Tomimoto H, Ohtani R, Kitano T, Kondo T, Watanabe M, Oka N, Akiguchi I, Furuya S, Hirabayashi Y, Okazaki T: Astroglial expression of ceramide in Alzheimer's disease brains: a role during neuronal apoptosis. Neuroscience. 2005;130(3):657-66. [PubMed:15590150 ]
  41. Gill JS, Windebank AJ: Suramin induced ceramide accumulation leads to apoptotic cell death in dorsal root ganglion neurons. Cell Death Differ. 1998 Oct;5(10):876-83. [PubMed:10203686 ]
  42. Both DM, Goodtzova K, Yarosh DB, Brown DA: Liposome-encapsulated ursolic acid increases ceramides and collagen in human skin cells. Arch Dermatol Res. 2002 Jan;293(11):569-75. [PubMed:11876525 ]
  43. Yarosh DB, Both D, Brown D: Liposomal ursolic acid (merotaine) increases ceramides and collagen in human skin. Horm Res. 2000;54(5-6):318-21. [PubMed:11595826 ]
  44. Persaud-Sawin DA, Boustany RM: Cell death pathways in juvenile Batten disease. Apoptosis. 2005 Oct;10(5):973-85. [PubMed:16151633 ]
  45. Di Marzio L, Cinque B, De Simone C, Cifone MG: Effect of the lactic acid bacterium Streptococcus thermophilus on ceramide levels in human keratinocytes in vitro and stratum corneum in vivo. J Invest Dermatol. 1999 Jul;113(1):98-106. [PubMed:10417626 ]
  46. Tanno O, Ota Y, Kitamura N, Katsube T, Inoue S: Nicotinamide increases biosynthesis of ceramides as well as other stratum corneum lipids to improve the epidermal permeability barrier. Br J Dermatol. 2000 Sep;143(3):524-31. [PubMed:10971324 ]
  47. Malagarie-Cazenave S, Segui B, Leveque S, Garcia V, Carpentier S, Altie MF, Brouchet A, Gouaze V, Andrieu-Abadie N, Barreira Y, Benoist H, Levade T: Role of FAN in tumor necrosis factor-alpha and lipopolysaccharide-induced interleukin-6 secretion and lethality in D-galactosamine-sensitized mice. J Biol Chem. 2004 Apr 30;279(18):18648-55. Epub 2004 Feb 25. [PubMed:14985352 ]
  48. Farina F, Cappello F, Todaro M, Bucchieri F, Peri G, Zummo G, Stassi G: Involvement of caspase-3 and GD3 ganglioside in ceramide-induced apoptosis in Farber disease. J Histochem Cytochem. 2000 Jan;48(1):57-62. [PubMed:10653586 ]
  49. Sugiki H, Hozumi Y, Maeshima H, Katagata Y, Mitsuhashi Y, Kondo S: C2-ceramide induces apoptosis in a human squamous cell carcinoma cell line. Br J Dermatol. 2000 Dec;143(6):1154-63. [PubMed:11122015 ]
  50. Lee HK, Nam GW, Kim SH, Lee SH: Phytocomponents of triterpenoids, oleanolic acid and ursolic acid, regulated differently the processing of epidermal keratinocytes via PPAR-alpha pathway. Exp Dermatol. 2006 Jan;15(1):66-73. [PubMed:16364033 ]
  51. Di Marzio L, Centi C, Cinque B, Masci S, Giuliani M, Arcieri A, Zicari L, De Simone C, Cifone MG: Effect of the lactic acid bacterium Streptococcus thermophilus on stratum corneum ceramide levels and signs and symptoms of atopic dermatitis patients. Exp Dermatol. 2003 Oct;12(5):615-20. [PubMed:14705802 ]
  52. Bektas M, Orfanos CE, Geilen CC: Different vitamin D analogues induce sphingomyelin hydrolysis and apoptosis in the human keratinocyte cell line HaCaT. Cell Mol Biol (Noisy-le-grand). 2000 Feb;46(1):111-9. [PubMed:10726977 ]
  53. Herr I, Martin-Villalba A, Kurz E, Roncaioli P, Schenkel J, Cifone MG, Debatin KM: FK506 prevents stroke-induced generation of ceramide and apoptosis signaling. Brain Res. 1999 May 1;826(2):210-9. [PubMed:10224298 ]
  54. Futerman AH: The roles of ceramide in the regulation of neuronal growth and development. Biochemistry (Mosc). 1998 Jan;63(1):74-83. [PubMed:9526098 ]
  55. Vielhaber G, Pfeiffer S, Brade L, Lindner B, Goldmann T, Vollmer E, Hintze U, Wittern KP, Wepf R: Localization of ceramide and glucosylceramide in human epidermis by immunogold electron microscopy. J Invest Dermatol. 2001 Nov;117(5):1126-36. [PubMed:11710923 ]
  56. Tserng KY, Griffin RL: Ceramide metabolite, not intact ceramide molecule, may be responsible for cellular toxicity. Biochem J. 2004 Jun 15;380(Pt 3):715-22. [PubMed:14998372 ]

Only showing the first 10 proteins. There are 70 proteins in total.

Enzymes

General function:
Involved in catalytic activity
Specific function:
Catalyzes the conversion of phosphatidic acid (PA) to diacylglycerol (DG). In addition it hydrolyzes lysophosphatidic acid (LPA), ceramide-1-phosphate (C-1-P) and sphingosine-1-phosphate (S-1-P). The relative catalytic efficiency is PA > C-1-P > LPA > S-1-P.
Gene Name:
PPAP2C
Uniprot ID:
O43688
Molecular weight:
32573.435
General function:
Involved in catalytic activity
Specific function:
Broad-specificity phosphohydrolase that dephosphorylates exogenous bioactive glycerolipids and sphingolipids. Catalyzes the conversion of phosphatidic acid (PA) to diacylglycerol (DG). Pivotal regulator of lysophosphatidic acid (LPA) signaling in the cardiovascular system. Major enzyme responsible of dephosphorylating LPA in platelets, which terminates signaling actions of LPA. May control circulating, and possibly also regulate localized, LPA levels resulting from platelet activation. It has little activity towards ceramide-1-phosphate (C-1-P) and sphingosine-1-phosphate (S-1-P). The relative catalytic efficiency is LPA > PA > S-1-P > C-1-P. It's down-regulation may contribute to the development of colon adenocarcinoma.
Gene Name:
PPAP2A
Uniprot ID:
O14494
Molecular weight:
32155.715
General function:
Involved in catalytic activity
Specific function:
Catalyzes the conversion of phosphatidic acid (PA) to diacylglycerol (DG). In addition it hydrolyzes lysophosphatidic acid (LPA), ceramide-1-phosphate (C-1-P) and sphingosine-1-phosphate (S-1-P). The relative catalytic efficiency is LPA = PA > C-1-P > S-1-P. May be involved in cell adhesion and in cell-cell interactions.
Gene Name:
PPAP2B
Uniprot ID:
O14495
Molecular weight:
35115.61
General function:
Involved in galactosylceramidase activity
Specific function:
Hydrolyzes the galactose ester bonds of galactosylceramide, galactosylsphingosine, lactosylceramide, and monogalactosyldiglyceride. Enzyme with very low activity responsible for the lysosomal catabolism of galactosylceramide, a major lipid in myelin, kidney and epithelial cells of small intestine and colon.
Gene Name:
GALC
Uniprot ID:
P54803
Molecular weight:
77062.86
General function:
Involved in hydrolase activity, hydrolyzing O-glycosyl compounds
Specific function:
LPH splits lactose in the small intestine.
Gene Name:
LCT
Uniprot ID:
P09848
Molecular weight:
218584.77
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
Catalyzes the formation of some glycolipid via the addition of N-acetylgalactosamine (GalNAc) in alpha-1,3-linkage to some substrate. Glycolipids probably serve for adherence of some pathogens
Gene Name:
GBGT1
Uniprot ID:
Q8N5D6
Molecular weight:
40126.9
General function:
Involved in N-acetylglucosaminylphosphatidylinositol de
Specific function:
Involved in the second step of GPI biosynthesis. De-N-acetylation of N-acetylglucosaminyl-phosphatidylinositol.
Gene Name:
PIGL
Uniprot ID:
Q9Y2B2
Molecular weight:
28530.965
General function:
Involved in catalytic activity
Specific function:
Bidirectional lipid cholinephosphotransferase capable of converting phosphatidylcholine (PC) and ceramide to sphingomyelin (SM) and diacylglycerol (DAG) and vice versa. Direction is dependent on the relative concentrations of DAG and ceramide as phosphocholine acceptors. Directly and specifically recognizes the choline head group on the substrate. Also requires two fatty chains on the choline-P donor molecule in order to be recognized efficiently as a substrate. Does not function strictly as a SM synthase. Required for cell growth
Gene Name:
SGMS2
Uniprot ID:
Q8NHU3
Molecular weight:
42279.8
General function:
Involved in catalytic activity
Specific function:
Bidirectional lipid cholinephosphotransferase capable of converting phosphatidylcholine (PC) and ceramide to sphingomyelin (SM) and diacylglycerol (DAG) and vice versa. Direction is dependent on the relative concentrations of DAG and ceramide as phosphocholine acceptors. Directly and specifically recognizes the choline head group on the substrate. Also requires two fatty chains on the choline-P donor molecule in order to be recognized efficiently as a substrate. Does not function strictly as a SM synthase. Suppresses BAX-mediated apoptosis and also prevents cell death in response to stimuli such as hydrogen peroxide, osmotic stress, elevated temperature and exogenously supplied sphingolipids. May protect against cell death by reversing the stress-inducible increase in levels of proapoptotic ceramide. Required for cell growth
Gene Name:
SGMS1
Uniprot ID:
Q86VZ5
Molecular weight:
49207.3
General function:
Involved in hydrolase activity
Specific function:
Converts sphingomyelin to ceramide. Also has phospholipase C activities toward 1,2-diacylglycerolphosphocholine and 1,2-diacylglycerolphosphoglycerol. Isoform 2 and isoform 3 have lost catalytic activity.
Gene Name:
SMPD1
Uniprot ID:
P17405
Molecular weight:
69935.53

Only showing the first 10 proteins. There are 70 proteins in total.