Record Information |
---|
Version | 5.0 |
---|
Status | Detected and Quantified |
---|
Creation Date | 2005-11-16 15:48:42 UTC |
---|
Update Date | 2022-03-07 02:49:06 UTC |
---|
HMDB ID | HMDB0000876 |
---|
Secondary Accession Numbers | - HMDB0014315
- HMDB00876
- HMDB14315
|
---|
Metabolite Identification |
---|
Common Name | Vitamin D3 |
---|
Description | Vitamin D3, also called cholecalciferol, is one of the forms of vitamin D. Vitamin D3 is a steroid hormone that has long been known for its important role in regulating body levels of calcium and phosphorus, in mineralization of bone, and for the assimilation of Vitamin A. It is structurally similar to steroids such as testosterone, cholesterol, and cortisol (although vitamin D3, itself, is a secosteroid). Vitamin D3 is a derivative of 7-dehydroxycholesterol formed by ultraviolet rays breaking the C9-C10 bond. It differs from ergocalciferol in having a single bond between C22 and C23 and lacking a methyl group at C24. Vitamin D3 can also come from dietary sources, such as beef liver, cheese, egg yolks, and fatty fish (PubChem). The first step involved in the activation of vitamin D3 is a 25-hydroxylation catalyzed by 25-hydroxylase in the liver and then by other enzymes. The mitochondrial sterol 27-hydroxylase catalyzes the first reaction in the oxidation of the side chain of sterol intermediates. The active form of vitamin D3 (calcitriol) binds to intracellular receptors that then function as transcription factors to modulate gene expression. Like the receptors for other steroid hormones and thyroid hormones, the vitamin D receptor has hormone-binding and DNA-binding domains. The vitamin D receptor forms a complex with another intracellular receptor, the retinoid-X receptor, and that heterodimer is what binds to DNA. In most cases studied, the effect is to activate transcription, but situations are also known in which vitamin D suppresses transcription. Calcitriol increases the serum calcium concentrations by (1) increasing GI absorption of phosphorus and calcium, (2) increasing osteoclastic resorption, and (3) increasing distal renal tubular reabsorption of calcium. Calcitriol appears to promote intestinal absorption of calcium through binding to the vitamin D receptor in the mucosal cytoplasm of the intestine. Subsequently, calcium is absorbed through the formation of a calcium-binding protein. |
---|
Structure | [H][C@@]1(CC[C@@]2([H])\C(CCC[C@]12C)=C\C=C1\C[C@@H](O)CCC1=C)[C@H](C)CCCC(C)C InChI=1S/C27H44O/c1-19(2)8-6-9-21(4)25-15-16-26-22(10-7-17-27(25,26)5)12-13-23-18-24(28)14-11-20(23)3/h12-13,19,21,24-26,28H,3,6-11,14-18H2,1-2,4-5H3/b22-12+,23-13-/t21-,24+,25-,26+,27-/m1/s1 |
---|
Synonyms | Value | Source |
---|
(+)-Vitamin D3 | ChEBI | (1S,3Z)-3-[(2E)-2-[(1R,3AR,7as)-7a-methyl-1-[(2R)-6-methylheptan-2-yl]-2,3,3a,5,6,7-hexahydro-1H-inden-4-ylidene]ethylidene]-4-methylidene-cyclohexan-1-ol | ChEBI | (3beta,5Z,7E)-9,10-Secocholesta-5,7,10(19)-trien-3-ol | ChEBI | (5Z,7E)-(3S)-9,10-Secocholesta-5,7,10(19)-trien-3-ol | ChEBI | Activated 7-dehydrocholesterol | ChEBI | CC | ChEBI | Cholecalciferol | ChEBI | Colecalciferol | ChEBI | Delta-D | ChEBI | Oleovitamin D3 | ChEBI | Calciol | Kegg | (3b,5Z,7E)-9,10-Secocholesta-5,7,10(19)-trien-3-ol | Generator | (3Β,5Z,7E)-9,10-secocholesta-5,7,10(19)-trien-3-ol | Generator | δ-D | Generator | 7-DEHYDROCHOLESTEROL | HMDB | ACTIVATED | HMDB | VITAMIN D | HMDB | Dihydrocholesterol | HMDB | Vitamin D 3 | HMDB | (3 beta,5Z,7E)-9,10-Secocholesta-5,7,10(19)-trien-3-ol | HMDB | Cholecalciferols | HMDB | Vitamin D3 | ChEBI |
|
---|
Chemical Formula | C27H44O |
---|
Average Molecular Weight | 384.6377 |
---|
Monoisotopic Molecular Weight | 384.33921603 |
---|
IUPAC Name | (1S,3Z)-3-{2-[(1R,3aS,4E,7aR)-7a-methyl-1-[(2R)-6-methylheptan-2-yl]-octahydro-1H-inden-4-ylidene]ethylidene}-4-methylidenecyclohexan-1-ol |
---|
Traditional Name | vitamin D3 |
---|
CAS Registry Number | 67-97-0 |
---|
SMILES | [H][C@@]1(CC[C@@]2([H])\C(CCC[C@]12C)=C\C=C1\C[C@@H](O)CCC1=C)[C@H](C)CCCC(C)C |
---|
InChI Identifier | InChI=1S/C27H44O/c1-19(2)8-6-9-21(4)25-15-16-26-22(10-7-17-27(25,26)5)12-13-23-18-24(28)14-11-20(23)3/h12-13,19,21,24-26,28H,3,6-11,14-18H2,1-2,4-5H3/b22-12+,23-13-/t21-,24+,25-,26+,27-/m1/s1 |
---|
InChI Key | QYSXJUFSXHHAJI-YRZJJWOYSA-N |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as vitamin d and derivatives. Vitamin D and derivatives are compounds containing a secosteroid backbone, usually secoergostane or secocholestane. |
---|
Kingdom | Organic compounds |
---|
Super Class | Lipids and lipid-like molecules |
---|
Class | Steroids and steroid derivatives |
---|
Sub Class | Vitamin D and derivatives |
---|
Direct Parent | Vitamin D and derivatives |
---|
Alternative Parents | |
---|
Substituents | - Triterpenoid
- Cyclic alcohol
- Secondary alcohol
- Organic oxygen compound
- Hydrocarbon derivative
- Organooxygen compound
- Alcohol
- Aliphatic homopolycyclic compound
|
---|
Molecular Framework | Aliphatic homopolycyclic compounds |
---|
External Descriptors | |
---|
Ontology |
---|
Physiological effect | Not Available |
---|
Disposition | Biological locationSourceExogenousFoodAnimal originSnackConfectioneryBaking goodCereal and cereal productDishAquatic originVegetableGourdTeaPulseMilk and milk productUnfermented milk- Cow milk, pasteurized, vitamin A + D added, 0% fat (FooDB: FOOD00889)
- Cow milk, pasteurized, vitamin A + D added, 1% fat (FooDB: FOOD00890)
- Cow milk, pasteurized, vitamin A + D added, 2% fat (FooDB: FOOD00891)
- Cow milk, pasteurized, vitamin D added, 3.25% fat (FooDB: FOOD00892)
- Milk (Other mammals) (FooDB: FOOD00690)
- Milk (Human) (FooDB: FOOD00666)
- Milk (Cow) (FooDB: FOOD00618)
Other milk productFermented milkFermented milk product Coffee and coffee productFat and oilFruitEggNutHerb and spiceBeverageBaby foodSoyUnclassified food or beverageCocoa and cocoa product |
---|
Process | |
---|
Role | |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Molecular Properties | Property | Value | Reference |
---|
Melting Point | 84.5 °C | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Experimental Chromatographic Properties | Not Available |
---|
Predicted Molecular Properties | |
---|
Predicted Chromatographic Properties | Predicted Collision Cross SectionsPredicted Kovats Retention IndicesUnderivatizedDerivatized |
---|
| GC-MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
Predicted GC-MS | Predicted GC-MS Spectrum - Vitamin D3 GC-MS (Non-derivatized) - 70eV, Positive | splash10-0aou-3029000000-1950c74de34369a70400 | 2017-09-01 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - Vitamin D3 GC-MS (1 TMS) - 70eV, Positive | splash10-002f-9207800000-c6f808a014153de38d58 | 2017-10-06 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - Vitamin D3 GC-MS (Non-derivatized) - 70eV, Positive | Not Available | 2021-10-12 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - Vitamin D3 GC-MS (Non-derivatized) - 70eV, Positive | Not Available | 2021-10-12 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - Vitamin D3 GC-MS (TBDMS_1_1) - 70eV, Positive | Not Available | 2021-11-06 | Wishart Lab | View Spectrum |
MS/MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Vitamin D3 10V, Positive-QTOF | splash10-014r-0129000000-80de8aabbfb587d8f7b9 | 2016-08-01 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Vitamin D3 20V, Positive-QTOF | splash10-0abi-2595000000-1f5db35cc732efef5e27 | 2016-08-01 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Vitamin D3 40V, Positive-QTOF | splash10-0pb9-7195000000-b742ddd81b2f98395fab | 2016-08-01 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Vitamin D3 10V, Negative-QTOF | splash10-001i-0009000000-70f22151bd69b3307086 | 2016-08-03 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Vitamin D3 20V, Negative-QTOF | splash10-001i-0009000000-7ff3c3cf4e98856a166b | 2016-08-03 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Vitamin D3 40V, Negative-QTOF | splash10-014i-1249000000-8756607b9fd7d6008ac9 | 2016-08-03 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Vitamin D3 10V, Positive-QTOF | splash10-000i-0459000000-cdb5561f3458bde4c2f1 | 2021-09-22 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Vitamin D3 20V, Positive-QTOF | splash10-0kmj-7494000000-5a36ac0547956f9ac058 | 2021-09-22 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Vitamin D3 40V, Positive-QTOF | splash10-0a4i-3930000000-c62b5a8a92e3487b90ed | 2021-09-22 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Vitamin D3 10V, Negative-QTOF | splash10-001i-0009000000-bfd82bd18d8804cfa1d2 | 2021-09-23 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Vitamin D3 20V, Negative-QTOF | splash10-001i-0009000000-d168cadb843f05c02d05 | 2021-09-23 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Vitamin D3 40V, Negative-QTOF | splash10-001i-0539000000-277213cec95d0ba155c5 | 2021-09-23 | Wishart Lab | View Spectrum |
NMR SpectraSpectrum Type | Description | Deposition Date | Source | View |
---|
Experimental 1D NMR | 1H NMR Spectrum (1D, 600 MHz, CDCl3, experimental) | 2019-05-16 | Wishart Lab | View Spectrum | Experimental 2D NMR | [1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, CDCl3, experimental) | 2019-05-16 | Wishart Lab | View Spectrum |
|
---|
General References | - Flanagan JN, Young MV, Persons KS, Wang L, Mathieu JS, Whitlatch LW, Holick MF, Chen TC: Vitamin D metabolism in human prostate cells: implications for prostate cancer chemoprevention by vitamin D. Anticancer Res. 2006 Jul-Aug;26(4A):2567-72. [PubMed:16886665 ]
- Rautureau M, Rambaud JC: Aqueous solubilisation of vitamin D3 in normal man. Gut. 1981 May;22(5):393-7. [PubMed:6265326 ]
- Shepard RM, Horst RL, Hamstra AJ, DeLuca HF: Determination of vitamin D and its metabolites in plasma from normal and anephric man. Biochem J. 1979 Jul 15;182(1):55-69. [PubMed:227368 ]
- Osborne JE, Hutchinson PE: Vitamin D and systemic cancer: is this relevant to malignant melanoma? Br J Dermatol. 2002 Aug;147(2):197-213. [PubMed:12174089 ]
- Haddad JG, Jennings AS, Aw TC: Vitamin D uptake and metabolism by perfused rat liver: influences of carrier proteins. Endocrinology. 1988 Jul;123(1):498-504. [PubMed:2838261 ]
- Kida K, Goodman DS: Studies on the transport of vitamin D and of 25-hydroxyvitamin D in human plasma. J Lipid Res. 1976 Sep;17(5):485-90. [PubMed:184223 ]
- Lips P: Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev. 2001 Aug;22(4):477-501. [PubMed:11493580 ]
- Svendsen ML, Daneels G, Geysen J, Binderup L, Kragballe K: Proliferation and differentiation of cultured human keratinocytes is modulated by 1,25(OH)2D3 and synthetic vitamin D3 analogues in a cell density-, calcium- and serum-dependent manner. Pharmacol Toxicol. 1997 Jan;80(1):49-56. [PubMed:9148283 ]
- Yetgin S, Yalcin SS: The effect of vitamin D3 on CD34 progenitor cells in vitamin D deficiency rickets. Turk J Pediatr. 2004 Apr-Jun;46(2):164-6. [PubMed:15214747 ]
- Astecker N, Reddy GS, Herzig G, Vorisek G, Schuster I: 1alpha,25-Dihydroxy-3-epi-vitamin D3 a physiological metabolite of 1alpha,25-dihydroxyvitamin D3: its production and metabolism in primary human keratinocytes. Mol Cell Endocrinol. 2000 Dec 22;170(1-2):91-101. [PubMed:11162893 ]
- Murao N, Ohishi N, Nabuchi Y, Ishigai M, Kawanishi T, Aso Y: The determination of 2beta-(3-hydroxypropoxy)-1alpha,25-dihydroxy vitamin D3 (ED-71) in human serum by high-performance liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Sep 5;823(2):61-8. Epub 2004 Nov 19. [PubMed:16102526 ]
- Lippens S, Kockx M, Denecker G, Knaapen M, Verheyen A, Christiaen R, Tschachler E, Vandenabeele P, Declercq W: Vitamin D3 induces caspase-14 expression in psoriatic lesions and enhances caspase-14 processing in organotypic skin cultures. Am J Pathol. 2004 Sep;165(3):833-41. [PubMed:15331408 ]
- Bjorkhem I, Holmberg I, Kristiansen T, Pedersen JI: Assay of 1,25-dihydroxy vitamin D3 by isotope dilution--mass fragmentography. Clin Chem. 1979 Apr;25(4):584-8. [PubMed:466767 ]
- Matsuoka LY, McConnachie P, Wortsman J, Holick MF: Immunological responses to ultraviolet light B radiation in Black individuals. Life Sci. 1999;64(17):1563-9. [PubMed:10353621 ]
- Zimber A, Chedeville A, Abita JP, Barbu V, Gespach C: Functional interactions between bile acids, all-trans retinoic acid, and 1,25-dihydroxy-vitamin D3 on monocytic differentiation and myeloblastin gene down-regulation in HL60 and THP-1 human leukemia cells. Cancer Res. 2000 Feb 1;60(3):672-8. [PubMed:10676652 ]
- Baggio B, Budakovic A, Nassuato MA, Vezzoli G, Manzato E, Luisetto G, Zaninotto M: Plasma phospholipid arachidonic acid content and calcium metabolism in idiopathic calcium nephrolithiasis. Kidney Int. 2000 Sep;58(3):1278-84. [PubMed:10972691 ]
- MacLaughlin J, Holick MF: Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest. 1985 Oct;76(4):1536-8. [PubMed:2997282 ]
- Lee YF, Young WJ, Lin WJ, Shyr CR, Chang C: Differential regulation of direct repeat 3 vitamin D3 and direct repeat 4 thyroid hormone signaling pathways by the human TR4 orphan receptor. J Biol Chem. 1999 Jun 4;274(23):16198-205. [PubMed:10347174 ]
- Okano T, Kuroda E, Nakao H, Kodama S, Matsuo T, Nakamichi Y, Nakajima K, Hirao N, Kobayashi T: Lack of evidence for existence of vitamin D and 25-hydroxyvitamin D sulfates in human breast and cow's milk. J Nutr Sci Vitaminol (Tokyo). 1986 Oct;32(5):449-62. [PubMed:3494111 ]
- Mata-Granados JM, Caballo-Lopez A, Luque de Castro MD, Quesada JM: Automated method for the determination of vitamin D3 hydroxymetabolites in serum. Anal Bioanal Chem. 2003 Sep;377(2):287-92. Epub 2003 Jul 9. [PubMed:12955389 ]
- Armas LA, Hollis BW, Heaney RP: Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab. 2004 Nov;89(11):5387-91. [PubMed:15531486 ]
- Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
- Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
- Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
- Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
- Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.
|
---|