You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information |
---|
Version | 4.0 |
---|
Status | Detected and Quantified |
---|
Creation Date | 2006-08-12 19:06:03 UTC |
---|
Update Date | 2020-11-09 23:17:18 UTC |
---|
HMDB ID | HMDB0003337 |
---|
Secondary Accession Numbers | |
---|
Metabolite Identification |
---|
Common Name | Oxidized glutathione |
---|
Description | Oxidized glutathione, also known as glutathione disulfide or GSSG, belongs to the class of organic compounds known as peptides. Peptides are compounds containing an amide derived from two or more amino carboxylic acid molecules (the same or different) by the formation of a covalent bond from the carbonyl carbon of one to the nitrogen atom of another. Oxidized glutathione is a very strong basic compound (based on its pKa). In humans, oxidized glutathione is involved in the metabolic disorder called leukotriene C4 synthesis deficiency pathway. Outside of the human body, oxidized glutathione has been detected, but not quantified in, several different foods, such as leeks, star anises, mamey sapotes, climbing beans, and common persimmons. This could make oxidized glutathione a potential biomarker for the consumption of these foods. Oxidized glutathione is a glutathione dimer formed by a disulfide bond between the cysteine sulfhydryl side chains during the course of being oxidized. Glutathione participates in leukotriene synthesis and is a cofactor for the enzyme glutathione peroxidase. It is also important as a hydrophilic molecule that is added to lipophilic toxins and waste in the liver during biotransformation before they can become part of the bile. Glutathione is also needed for the detoxification of methylglyoxal, a toxin produced as a by-product of metabolism. This detoxification reaction is carried out by the glyoxalase system. Glyoxalase I (EC 4.4.1.5) catalyzes the conversion of methylglyoxal and reduced glutathione into S-D-lactoyl-glutathione. Glyoxalase II (EC 3.1.2.6) catalyzes the hydrolysis of S-D-lactoyl-glutathione into glutathione and D-lactate. |
---|
Structure | |
---|
Synonyms | Value | Source |
---|
Glutathione disulphide | ChEBI | GSSG | ChEBI | Oxidised glutathione | ChEBI | Oxidized glutathione | ChEBI | OXIDIZED glutathione disulfide | ChEBI | Oxiglutatione | ChEBI | Glutathione | Kegg | OXIDIZED glutathione disulphide | Generator | Disulfide, glutathione | MeSH | Glutathione, oxidized | MeSH | Glutathione disulfide, ion(1-) | MeSH | Glutathione disulfide | Generator | Glutathione-S-S-glutathione | HMDB | Glutathione-SSG | HMDB | Oxidized L-glutathione | HMDB | Selenoglutathione | HMDB |
|
---|
Chemical Formula | C20H32N6O12S2 |
---|
Average Molecular Weight | 612.631 |
---|
Monoisotopic Molecular Weight | 612.151961898 |
---|
IUPAC Name | (2S)-2-amino-4-{[(1R)-2-{[(2R)-2-[(4S)-4-amino-4-carboxybutanamido]-2-[(carboxymethyl)carbamoyl]ethyl]disulfanyl}-1-[(carboxymethyl)carbamoyl]ethyl]carbamoyl}butanoic acid |
---|
Traditional Name | glutathione disulfide |
---|
CAS Registry Number | 27025-41-8 |
---|
SMILES | N[C@@H](CCC(=O)N[C@@H](CSSC[C@H](NC(=O)CC[C@H](N)C(O)=O)C(=O)NCC(O)=O)C(=O)NCC(O)=O)C(O)=O |
---|
InChI Identifier | InChI=1S/C20H32N6O12S2/c21-9(19(35)36)1-3-13(27)25-11(17(33)23-5-15(29)30)7-39-40-8-12(18(34)24-6-16(31)32)26-14(28)4-2-10(22)20(37)38/h9-12H,1-8,21-22H2,(H,23,33)(H,24,34)(H,25,27)(H,26,28)(H,29,30)(H,31,32)(H,35,36)(H,37,38)/t9-,10-,11-,12-/m0/s1 |
---|
InChI Key | YPZRWBKMTBYPTK-BJDJZHNGSA-N |
---|
Chemical Taxonomy |
---|
Description | belongs to the class of organic compounds known as peptides. Peptides are compounds containing an amide derived from two or more amino carboxylic acid molecules (the same or different) by formation of a covalent bond from the carbonyl carbon of one to the nitrogen atom of another. |
---|
Kingdom | Organic compounds |
---|
Super Class | Organic acids and derivatives |
---|
Class | Carboxylic acids and derivatives |
---|
Sub Class | Amino acids, peptides, and analogues |
---|
Direct Parent | Peptides |
---|
Alternative Parents | |
---|
Substituents | - Alpha peptide
- N-acyl-alpha-amino acid
- N-acyl-alpha amino acid or derivatives
- Tetracarboxylic acid or derivatives
- Alpha-amino acid
- Alpha-amino acid or derivatives
- L-alpha-amino acid
- Amino acid or derivatives
- Amino acid
- Dialkyldisulfide
- Organic disulfide
- Carboximidic acid
- Carboximidic acid derivative
- Carboxylic acid
- Organic 1,3-dipolar compound
- Propargyl-type 1,3-dipolar organic compound
- Sulfenyl compound
- Amine
- Hydrocarbon derivative
- Organic oxide
- Primary aliphatic amine
- Organic oxygen compound
- Organic nitrogen compound
- Organonitrogen compound
- Organooxygen compound
- Organosulfur compound
- Organopnictogen compound
- Primary amine
- Carbonyl group
- Aliphatic acyclic compound
|
---|
Molecular Framework | Aliphatic acyclic compounds |
---|
External Descriptors | |
---|
Ontology |
---|
|
Physiological effect | Health effect: |
---|
Disposition | Route of exposure: Source: Biological location: |
---|
Process | Naturally occurring process: |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Predicted Properties | |
---|
Spectra |
---|
| Spectrum Type | Description | Splash Key | View |
---|
GC-MS | GC-MS Spectrum - GC-EI-TOF (Non-derivatized) | splash10-0a4i-0900000000-c8147955c6b355f0fc5c | Spectrum | GC-MS | GC-MS Spectrum - GC-EI-TOF (Non-derivatized) | splash10-0a4i-0910000000-3e6195d480fbfe87b449 | Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT , negative | splash10-0uki-0290000000-04456f914411a2ecbe4f | Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT , negative | splash10-0a4i-0039210000-772eee67ad10a2d98fa7 | Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QTOF , negative | splash10-08fr-1957008000-f8812fd72d475ecd2693 | Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QQ , positive | splash10-03di-0000109000-65d563bcfc551b4a7abd | Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QQ , positive | splash10-03di-0003309000-7555effd0b74737b9d2f | Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QQ , positive | splash10-0a4i-0259201000-2cd328143ce713c285d9 | Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QQ , positive | splash10-05d0-0493000000-93bd088394049a484b9d | Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QQ , positive | splash10-001r-0190000000-88b871b5a3f668f4b3a1 | Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-IT , positive | splash10-0a59-0019811000-b24651cf6fc55de750b8 | Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT , positive | splash10-053s-0495300000-69ab8e397b7a546ecd3f | Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT , positive | splash10-053r-0007920000-39da34018ceb610daa32 | Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QTOF , positive | splash10-03di-0000009000-9cde769e8905f413f7e3 | Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QTOF , positive | splash10-03di-0000009000-4e3c9569882ab5507bf2 | Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 10V, Positive | splash10-0292-1000291000-9683d81eec1eab3f9883 | Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 20V, Positive | splash10-01u0-8214980000-1738ea6e3b4537936eee | Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 40V, Positive | splash10-057i-9534520000-7ef32e723a98599c32d7 | Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 10V, Negative | splash10-03di-0147096000-e516803ef5124daee1a7 | Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 20V, Negative | splash10-0a4l-2497151000-ef5ab8f9bbe20555f37c | Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 40V, Negative | splash10-006y-9411230000-cc41719d1e717d214643 | Spectrum | 1D NMR | 1H NMR Spectrum | Not Available | Spectrum |
|
---|
Biological Properties |
---|
Cellular Locations | - Extracellular
- Mitochondria
|
---|
Biospecimen Locations | - Blood
- Cerebrospinal Fluid (CSF)
- Saliva
- Urine
|
---|
Tissue Locations | - Brain
- Epidermis
- Erythrocyte
- Fibroblasts
- Leukocyte
- Liver
- Pancreas
- Placenta
- Platelet
|
---|
Pathways | |
---|
Normal Concentrations |
---|
| |
Blood | Detected and Quantified | 19.96 +/- 24.82 uM | Adult (>18 years old) | Both | Normal | | details | Blood | Detected but not Quantified | Not Quantified | Adult (>18 years old) | Both | Normal | | details | Blood | Detected and Quantified | 1.69 +/- 0.38 uM | Adult (>18 years old) | Both | Normal | | details | Cerebrospinal Fluid (CSF) | Detected and Quantified | 0.041 +/- 0.01 uM | Adult (>18 years old) | Not Specified | Normal | | details | Saliva | Detected and Quantified | 0.88 +/- 0.43 uM | Adult (>18 years old) | Female | Normal | | details | Saliva | Detected and Quantified | 0.0156 +/- 0.0359 uM | Adult (>18 years old) | Female | Normal | | details | Saliva | Detected and Quantified | 0.207 +/- 0.264 uM | Adult (>18 years old) | Female | Normal | | details | Saliva | Detected and Quantified | 0.216 +/- 0.250 uM | Adult (>18 years old) | Both | Normal | | details | Saliva | Detected and Quantified | 0.249 +/- 0.397 uM | Adult (>18 years old) | Both | Normal | | details | Saliva | Detected and Quantified | 0.349 +/- 0.436 uM | Adult (>18 years old) | Not Specified | Normal | | details | Saliva | Detected and Quantified | 0.350 +/- 1.05 uM | Adult (>18 years old) | Female | Normal | | details | Saliva | Detected and Quantified | 0.350 +/- 1.05 uM | Adult (>18 years old) | Not Specified | Normal | | details | Urine | Detected but not Quantified | Not Quantified | Adult (>18 years old) | Both | Normal | | details |
|
---|
Abnormal Concentrations |
---|
| |
Blood | Detected and Quantified | 27.94 +/- 23.19 uM | Adult (>18 years old) | Both | Schizophrenia | | details | Blood | Detected and Quantified | 1.98 +/- 0.41 uM | Adult (>18 years old) | Both | Canavan disease | | details | Cerebrospinal Fluid (CSF) | Detected and Quantified | 0.065 +/- 0.01 uM | Adult (>18 years old) | Not Specified | Multiple sclerosis | | details | Cerebrospinal Fluid (CSF) | Detected and Quantified | 0.044 +/- 0.01 uM | Adult (>18 years old) | Not Specified | Multiple sclerosis | | details | Saliva | Detected and Quantified | 0.39 +/- 0.18 uM | Adult (>18 years old) | Male | Alzheimer's disease | | details | Saliva | Detected and Quantified | 0.58 +/- 0.47 uM | Adult (>18 years old) | Male | Frontotemporal lobe dementia | | details | Saliva | Detected but not Quantified | Not Quantified | Adult (>18 years old) | Male | Attachment loss | | details | Saliva | Detected but not Quantified | Not Quantified | Adult (>18 years old) | Male | Periodontal Probing Depth | | details | Saliva | Detected and Quantified | 0.434 +/- 0.405 uM | Adult (>18 years old) | Both | Temporomandibular joint disorder (TMD) | | details | Saliva | Detected and Quantified | 0.441 +/- 0.403 uM | Adult (>18 years old) | Both | Dental caries | | details | Saliva | Detected and Quantified | 2.91 +/- 4.90 uM | Adult (>18 years old) | Both | Lewy body disease | | details |
|
---|
Associated Disorders and Diseases |
---|
Disease References | Canavan disease |
---|
- Tavazzi B, Lazzarino G, Leone P, Amorini AM, Bellia F, Janson CG, Di Pietro V, Ceccarelli L, Donzelli S, Francis JS, Giardina B: Simultaneous high performance liquid chromatographic separation of purines, pyrimidines, N-acetylated amino acids, and dicarboxylic acids for the chemical diagnosis of inborn errors of metabolism. Clin Biochem. 2005 Nov;38(11):997-1008. Epub 2005 Sep 1. [PubMed:16139832 ]
| Schizophrenia |
---|
- Ballesteros A, Summerfelt A, Du X, Jiang P, Chiappelli J, Tagamets M, O'Donnell P, Kochunov P, Hong LE: Electrophysiological intermediate biomarkers for oxidative stress in schizophrenia. Clin Neurophysiol. 2013 Nov;124(11):2209-15. doi: 10.1016/j.clinph.2013.05.021. Epub 2013 Jun 30. [PubMed:23823132 ]
| Multiple sclerosis |
---|
- Calabrese V, Scapagnini G, Ravagna A, Bella R, Butterfield DA, Calvani M, Pennisi G, Giuffrida Stella AM: Disruption of thiol homeostasis and nitrosative stress in the cerebrospinal fluid of patients with active multiple sclerosis: evidence for a protective role of acetylcarnitine. Neurochem Res. 2003 Sep;28(9):1321-8. [PubMed:12938853 ]
| Alzheimer's disease |
---|
- Tsuruoka M, Hara J, Hirayama A, Sugimoto M, Soga T, Shankle WR, Tomita M: Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis. 2013 Oct;34(19):2865-72. doi: 10.1002/elps.201300019. Epub 2013 Sep 6. [PubMed:23857558 ]
| Frontotemporal dementia |
---|
- Tsuruoka M, Hara J, Hirayama A, Sugimoto M, Soga T, Shankle WR, Tomita M: Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis. 2013 Oct;34(19):2865-72. doi: 10.1002/elps.201300019. Epub 2013 Sep 6. [PubMed:23857558 ]
| Lewy body disease |
---|
- Tsuruoka M, Hara J, Hirayama A, Sugimoto M, Soga T, Shankle WR, Tomita M: Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis. 2013 Oct;34(19):2865-72. doi: 10.1002/elps.201300019. Epub 2013 Sep 6. [PubMed:23857558 ]
| Temporomandibular joint disorder |
---|
- (). Sugimoto et al. (2013) Physiological and environmental parameters associated with mass spectrometry-based salivary metabolomic profiles. . .
| Attachment loss |
---|
- Liebsch C, Pitchika V, Pink C, Samietz S, Kastenmuller G, Artati A, Suhre K, Adamski J, Nauck M, Volzke H, Friedrich N, Kocher T, Holtfreter B, Pietzner M: The Saliva Metabolome in Association to Oral Health Status. J Dent Res. 2019 Jun;98(6):642-651. doi: 10.1177/0022034519842853. Epub 2019 Apr 26. [PubMed:31026179 ]
| Periodontal Probing Depth |
---|
- Liebsch C, Pitchika V, Pink C, Samietz S, Kastenmuller G, Artati A, Suhre K, Adamski J, Nauck M, Volzke H, Friedrich N, Kocher T, Holtfreter B, Pietzner M: The Saliva Metabolome in Association to Oral Health Status. J Dent Res. 2019 Jun;98(6):642-651. doi: 10.1177/0022034519842853. Epub 2019 Apr 26. [PubMed:31026179 ]
|
|
---|
Associated OMIM IDs | |
---|
External Links |
---|
DrugBank ID | DB03310 |
---|
Phenol Explorer Compound ID | Not Available |
---|
FooDB ID | FDB023147 |
---|
KNApSAcK ID | Not Available |
---|
Chemspider ID | 58835 |
---|
KEGG Compound ID | C00127 |
---|
BioCyc ID | OXIDIZED-GLUTATHIONE |
---|
BiGG ID | Not Available |
---|
Wikipedia Link | Glutathione disulfide |
---|
METLIN ID | Not Available |
---|
PubChem Compound | 65359 |
---|
PDB ID | Not Available |
---|
ChEBI ID | 17858 |
---|
Food Biomarker Ontology | Not Available |
---|
VMH ID | Not Available |
---|
MarkerDB ID | MDB00000421 |
---|
References |
---|
Synthesis Reference | Saito, Susumu; Nishijima, Kunihide; Kataoka, Katsuyuki; Aoyanagi, Yoshinori; Fukuda, Yoji; Ito, Homare. Manufacture of oxidized glutathione from reduced glutathione with ascorbic acid and ascorbate oxidase. Jpn. Kokai Tokkyo Koho (1995), 4 pp. |
---|
Material Safety Data Sheet (MSDS) | Download (PDF) |
---|
General References | - Slivka A, Spina MB, Cohen G: Reduced and oxidized glutathione in human and monkey brain. Neurosci Lett. 1987 Feb 10;74(1):112-8. [PubMed:3561870 ]
- Aukrust P, Svardal AM, Muller F, Lunden B, Berge RK, Ueland PM, Froland SS: Increased levels of oxidized glutathione in CD4+ lymphocytes associated with disturbed intracellular redox balance in human immunodeficiency virus type 1 infection. Blood. 1995 Jul 1;86(1):258-67. [PubMed:7795231 ]
- Sakhi AK, Russnes KM, Smeland S, Blomhoff R, Gundersen TE: Simultaneous quantification of reduced and oxidized glutathione in plasma using a two-dimensional chromatographic system with parallel porous graphitized carbon columns coupled with fluorescence and coulometric electrochemical detection. J Chromatogr A. 2006 Feb 3;1104(1-2):179-89. [PubMed:16376913 ]
- Glazyrin AL, Kolesnikov SI, Safronov AYu: Histochemical localization of oxidized glutathione-catalysing enzymes in human term placenta. Histochem J. 1993 Jan;25(1):45-50. [PubMed:8432663 ]
- Calabrese V, Scapagnini G, Ravagna A, Bella R, Butterfield DA, Calvani M, Pennisi G, Giuffrida Stella AM: Disruption of thiol homeostasis and nitrosative stress in the cerebrospinal fluid of patients with active multiple sclerosis: evidence for a protective role of acetylcarnitine. Neurochem Res. 2003 Sep;28(9):1321-8. [PubMed:12938853 ]
- Carru C, Zinellu A, Pes GM, Marongiu G, Tadolini B, Deiana L: Ultrarapid capillary electrophoresis method for the determination of reduced and oxidized glutathione in red blood cells. Electrophoresis. 2002 Jun;23(11):1716-21. [PubMed:12179993 ]
- Tauler P, Sureda A, Cases N, Aguilo A, Rodriguez-Marroyo JA, Villa G, Tur JA, Pons A: Increased lymphocyte antioxidant defences in response to exhaustive exercise do not prevent oxidative damage. J Nutr Biochem. 2006 Oct;17(10):665-71. Epub 2005 Nov 28. [PubMed:16481153 ]
- Tohgi H, Abe T, Saheki M, Hamato F, Sasaki K, Takahashi S: Reduced and oxidized forms of glutathione and alpha-tocopherol in the cerebrospinal fluid of parkinsonian patients: comparison between before and after L-dopa treatment. Neurosci Lett. 1995 Jan 16;184(1):21-4. [PubMed:7739798 ]
- Yoshida T: Determination of reduced and oxidized glutathione in erythrocytes by high-performance liquid chromatography with ultraviolet absorbance detection. J Chromatogr B Biomed Appl. 1996 Apr 12;678(2):157-64. [PubMed:8738017 ]
- Sofic E, Lange KW, Jellinger K, Riederer P: Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson's disease. Neurosci Lett. 1992 Aug 17;142(2):128-30. [PubMed:1454205 ]
- Kondo T, Ohtsuka Y, Shimada M, Kawakami Y, Hiyoshi Y, Tsuji Y, Fujii H, Miwa S: Erythrocyte-oxidized glutathione transport in pyrimidine 5'-nucleotidase deficiency. Am J Hematol. 1987 Sep;26(1):37-45. [PubMed:2888306 ]
- Muda P, Kampus P, Zilmer M, Zilmer K, Kairane C, Ristimae T, Fischer K, Teesalu R: Homocysteine and red blood cell glutathione as indices for middle-aged untreated essential hypertension patients. J Hypertens. 2003 Dec;21(12):2329-33. [PubMed:14654754 ]
- Satoh T, Yoshioka Y: Contribution of reduced and oxidized glutathione to signals detected by magnetic resonance spectroscopy as indicators of local brain redox state. Neurosci Res. 2006 May;55(1):34-9. Epub 2006 Feb 24. [PubMed:16503064 ]
- Srivastava SK, Beutler E: Oxidized glutathione levels in erythrocytes of glucose-6-phosphate-dehydrogenase-deficient subjects. Lancet. 1968 Jul 6;2(7558):23-4. [PubMed:4172687 ]
- Board P, Nishida T, Gatmaitan Z, Che M, Arias IM: Erythrocyte membrane transport of glutathione conjugates and oxidized glutathione in the Dubin-Johnson syndrome and in rats with hereditary hyperbilirubinemia. Hepatology. 1992 Apr;15(4):722-5. [PubMed:1551648 ]
- Elshenawy S, Pinney SE, Stuart T, Doulias PT, Zura G, Parry S, Elovitz MA, Bennett MJ, Bansal A, Strauss JF 3rd, Ischiropoulos H, Simmons RA: The Metabolomic Signature of the Placenta in Spontaneous Preterm Birth. Int J Mol Sci. 2020 Feb 4;21(3). pii: ijms21031043. doi: 10.3390/ijms21031043. [PubMed:32033212 ]
|
---|