Hmdb loader
Show more...Show more...Show more...Show more...Show more...Show more...Show more...
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2022-03-07 02:48:59 UTC
HMDB IDHMDB0000086
Secondary Accession Numbers
  • HMDB0000049
  • HMDB00049
  • HMDB00086
Metabolite Identification
Common NameGlycerophosphocholine
DescriptionGlycerophosphorylcholine (GPC) is a choline derivative and one of the two major forms of choline storage (along with phosphocholine) in the cytosol. Glycerophosphorylcholine is also one of the four major organic osmolytes in renal medullary cells, changing their intracellular osmolyte concentration in parallel with extracellular tonicity during cellular osmoadaptation. As an osmolyte, Glycerophosphorylcholine counteracts the effects of urea on enzymes and other macromolecules. Kidneys (especially medullar cells), which are exposed under normal physiological conditions to widely fluctuating extracellular solute concentrations, respond to hypertonic stress by accumulating the organic osmolytes glycerophosphorylcholine (GPC), betaine, myo-inositol, sorbitol and free amino acids. Increased intracellular contents of these osmolytes are achieved by a combination of increased uptake (myo-inositol and betaine) and synthesis (sorbitol, GPC), decreased degradation (GPC) and reduced osmolyte release. GPC is formed in the breakdown of phosphatidylcholine (PtC). This pathway is active in many body tissues, including mammary tissue.
Structure
Data?1582752111
Synonyms
Chemical FormulaC8H20NO6P
Average Molecular Weight257.223
Monoisotopic Molecular Weight257.102824366
IUPAC Name(2-{[(2R)-2,3-dihydroxypropyl phosphono]oxy}ethyl)trimethylazanium
Traditional Name(2-{[(2R)-2,3-dihydroxypropyl phosphono]oxy}ethyl)trimethylazanium
CAS Registry Number28319-77-9
SMILES
C[N+](C)(C)CCOP([O-])(=O)OC[C@H](O)CO
InChI Identifier
InChI=1S/C8H20NO6P/c1-9(2,3)4-5-14-16(12,13)15-7-8(11)6-10/h8,10-11H,4-7H2,1-3H3/t8-/m1/s1
InChI KeySUHOQUVVVLNYQR-MRVPVSSYSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as glycerophosphocholines. These are lipids containing a glycerol moiety carrying a phosphocholine at the 3-position.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassGlycerophospholipids
Sub ClassGlycerophosphocholines
Direct ParentGlycerophosphocholines
Alternative Parents
Substituents
  • Glycero-3-phosphocholine
  • Phosphocholine
  • Dialkyl phosphate
  • Organic phosphoric acid derivative
  • Phosphoric acid ester
  • Alkyl phosphate
  • Tetraalkylammonium salt
  • Quaternary ammonium salt
  • 1,2-diol
  • Secondary alcohol
  • Organic nitrogen compound
  • Organic salt
  • Hydrocarbon derivative
  • Primary alcohol
  • Organic oxide
  • Organopnictogen compound
  • Organooxygen compound
  • Organonitrogen compound
  • Organic oxygen compound
  • Amine
  • Alcohol
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
Physiological effectNot Available
Disposition
Process
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point142.5 °CNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Experimental Chromatographic Properties

Experimental Collision Cross Sections

Adduct TypeData SourceCCS Value (Å2)Reference
[M+H]+MetCCS_train_pos155.53330932474
[M+H]+Not Available155.725http://allccs.zhulab.cn/database/detail?ID=AllCCS00000443
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Membrane
Biospecimen Locations
  • Blood
  • Breast Milk
  • Cerebrospinal Fluid (CSF)
  • Feces
  • Saliva
  • Semen
  • Urine
Tissue Locations
  • Brain
  • Kidney
  • Placenta
  • Prostate
  • Spleen
Pathways
Normal Concentrations
Abnormal Concentrations
Associated Disorders and Diseases
Disease References
Kidney cancer
  1. Lin L, Huang Z, Gao Y, Chen Y, Hang W, Xing J, Yan X: LC-MS-based serum metabolic profiling for genitourinary cancer classification and cancer type-specific biomarker discovery. Proteomics. 2012 Aug;12(14):2238-46. doi: 10.1002/pmic.201200016. [PubMed:22685041 ]
Multi-infarct dementia
  1. Walter A, Korth U, Hilgert M, Hartmann J, Weichel O, Hilgert M, Fassbender K, Schmitt A, Klein J: Glycerophosphocholine is elevated in cerebrospinal fluid of Alzheimer patients. Neurobiol Aging. 2004 Nov-Dec;25(10):1299-303. [PubMed:15465626 ]
Alzheimer's disease
  1. Walter A, Korth U, Hilgert M, Hartmann J, Weichel O, Hilgert M, Fassbender K, Schmitt A, Klein J: Glycerophosphocholine is elevated in cerebrospinal fluid of Alzheimer patients. Neurobiol Aging. 2004 Nov-Dec;25(10):1299-303. [PubMed:15465626 ]
Perillyl alcohol administration for cancer treatment
  1. Sugimoto M, Wong DT, Hirayama A, Soga T, Tomita M: Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics. 2010 Mar;6(1):78-95. Epub 2009 Sep 10. [PubMed:20300169 ]
Pancreatic cancer
  1. Sugimoto M, Wong DT, Hirayama A, Soga T, Tomita M: Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics. 2010 Mar;6(1):78-95. Epub 2009 Sep 10. [PubMed:20300169 ]
Periodontal disease
  1. Sugimoto M, Wong DT, Hirayama A, Soga T, Tomita M: Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics. 2010 Mar;6(1):78-95. Epub 2009 Sep 10. [PubMed:20300169 ]
Attachment loss
  1. Liebsch C, Pitchika V, Pink C, Samietz S, Kastenmuller G, Artati A, Suhre K, Adamski J, Nauck M, Volzke H, Friedrich N, Kocher T, Holtfreter B, Pietzner M: The Saliva Metabolome in Association to Oral Health Status. J Dent Res. 2019 Jun;98(6):642-651. doi: 10.1177/0022034519842853. Epub 2019 Apr 26. [PubMed:31026179 ]
Missing teeth
  1. Liebsch C, Pitchika V, Pink C, Samietz S, Kastenmuller G, Artati A, Suhre K, Adamski J, Nauck M, Volzke H, Friedrich N, Kocher T, Holtfreter B, Pietzner M: The Saliva Metabolome in Association to Oral Health Status. J Dent Res. 2019 Jun;98(6):642-651. doi: 10.1177/0022034519842853. Epub 2019 Apr 26. [PubMed:31026179 ]
Periodontal Probing Depth
  1. Liebsch C, Pitchika V, Pink C, Samietz S, Kastenmuller G, Artati A, Suhre K, Adamski J, Nauck M, Volzke H, Friedrich N, Kocher T, Holtfreter B, Pietzner M: The Saliva Metabolome in Association to Oral Health Status. J Dent Res. 2019 Jun;98(6):642-651. doi: 10.1177/0022034519842853. Epub 2019 Apr 26. [PubMed:31026179 ]
Prosthesis/Missing teeth
  1. Liebsch C, Pitchika V, Pink C, Samietz S, Kastenmuller G, Artati A, Suhre K, Adamski J, Nauck M, Volzke H, Friedrich N, Kocher T, Holtfreter B, Pietzner M: The Saliva Metabolome in Association to Oral Health Status. J Dent Res. 2019 Jun;98(6):642-651. doi: 10.1177/0022034519842853. Epub 2019 Apr 26. [PubMed:31026179 ]
Associated OMIM IDs
DrugBank IDDB04660
Phenol Explorer Compound IDNot Available
FooDB IDFDB030952
KNApSAcK IDNot Available
Chemspider ID571409
KEGG Compound IDC00670
BioCyc IDL-1-GLYCERO-PHOSPHORYLCHOLINE
BiGG IDNot Available
Wikipedia LinkAlpha-GPC
METLIN ID370
PubChem Compound657272
PDB IDNot Available
ChEBI ID16870
Food Biomarker OntologyNot Available
VMH IDG3PC
MarkerDB IDMDB00000045
Good Scents IDNot Available
References
Synthesis ReferenceEvans, Christopher Thomas; McCague, Raymond; Tyrrell, Nicholas David. Preparation of phospholipid-intermediate glycerophosphocholine by a crystallization process. PCT Int. Appl. (1993), 8 pp.
Material Safety Data Sheet (MSDS)Download (PDF)
General References

Only showing the first 10 proteins. There are 15 proteins in total.

Enzymes

General function:
Involved in hydrolase activity
Specific function:
Hydrolyzes fatty acids from S-acylated cysteine residues in proteins such as trimeric G alpha proteins or HRAS. Has depalmitoylating activity and also low lysophospholipase activity.
Gene Name:
LYPLA1
Uniprot ID:
O75608
Molecular weight:
24669.355
Reactions
1-Acyl-sn-glycero-3-phosphocholine + Water → Glycerophosphocholine + Fatty aciddetails
General function:
Involved in phosphatidylcholine-sterol O-acyltransferase activity
Specific function:
Has transacylase and calcium-independent phospholipase A2 activity. Catalyzes the formation of 1-O-acyl-N-acetylsphingosine and the concomitant release of a lyso-phospholipid (By similarity). May have weak lysophospholipase activity.
Gene Name:
PLA2G15
Uniprot ID:
Q8NCC3
Molecular weight:
Not Available
Reactions
1-Acyl-sn-glycero-3-phosphocholine + Water → Glycerophosphocholine + Fatty aciddetails
General function:
Involved in metabolic process
Specific function:
Selectively hydrolyzes arachidonyl phospholipids in the sn-2 position releasing arachidonic acid. Together with its lysophospholipid activity, it is implicated in the initiation of the inflammatory response.
Gene Name:
PLA2G4A
Uniprot ID:
P47712
Molecular weight:
85210.19
Reactions
2-lysophosphatidylcholine + Water → Glycerophosphocholine + a carboxylatedetails
General function:
Involved in sugar binding
Specific function:
Has lysophospholipase activity.
Gene Name:
LGALS13
Uniprot ID:
Q9UHV8
Molecular weight:
16118.44
Reactions
2-lysophosphatidylcholine + Water → Glycerophosphocholine + a carboxylatedetails
General function:
Involved in hydrolase activity
Specific function:
May hydrolyze fatty acids from S-acylated cysteine residues in proteins such as trimeric G alpha proteins or HRAS. Has lysophospholipase activity (By similarity). Deacylates GAP43.
Gene Name:
LYPLA2
Uniprot ID:
O95372
Molecular weight:
24736.71
General function:
Involved in sugar binding
Specific function:
May have both lysophospholipase and carbohydrate-binding activities.
Gene Name:
CLC
Uniprot ID:
Q05315
Molecular weight:
16452.785
Reactions
2-lysophosphatidylcholine + Water → Glycerophosphocholine + a carboxylatedetails
General function:
Involved in asparaginase activity
Specific function:
Exhibits lysophospholipase, transacylase, PAF acetylhydrolase and asparaginase activities.
Gene Name:
ASPG
Uniprot ID:
Q86U10
Molecular weight:
60882.4
Reactions
2-lysophosphatidylcholine + Water → Glycerophosphocholine + a carboxylatedetails
General function:
Involved in hydrolase activity
Specific function:
Membrane-associated phospholipase. Exhibits a calcium-independent broad substrate specificity including phospholipase A2/lysophospholipase activity. Preferential hydrolysis at the sn-2 position of diacylphospholipids and diacyglycerol, whereas it shows no positional specificity toward triacylglycerol. Exhibits also esterase activity toward p-nitrophenyl. May act on the brush border membrane to facilitate the absorption of digested lipids (By similarity).
Gene Name:
PLB1
Uniprot ID:
Q6P1J6
Molecular weight:
161711.9
Reactions
2-lysophosphatidylcholine + Water → Glycerophosphocholine + a carboxylatedetails
1-Acyl-sn-glycero-3-phosphocholine + Water → Glycerophosphocholine + Fatty aciddetails
2-Acyl-sn-glycero-3-phosphocholine + Water → Glycerophosphocholine + Fatty aciddetails
General function:
Involved in glycerophosphodiester phosphodiesterase activity
Specific function:
Has glycerophosphoinositol phosphodiesterase activity. Has little or no activity towards glycerophosphocholine. GDE1 activity can be modulated by G-protein signaling pathways (By similarity).
Gene Name:
GDE1
Uniprot ID:
Q9NZC3
Molecular weight:
37718.04
General function:
Involved in metabolic process
Specific function:
Calcium-independent phospholipase A2, which catalyzes the hydrolysis of the sn-2 position of glycerophospholipids, PtdSer and to a lower extent PtdCho. Cleaves membrane phospholipids.
Gene Name:
PNPLA8
Uniprot ID:
Q9NP80
Molecular weight:
88476.085
Reactions
2-lysophosphatidylcholine + Water → Glycerophosphocholine + a carboxylatedetails

Only showing the first 10 proteins. There are 15 proteins in total.