Hmdb loader
Show more accession numbersShow more...Show more...Show more...Show more...Show more...Show more...Show more...
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2021-09-14 15:47:19 UTC
HMDB IDHMDB0000050
Secondary Accession Numbers
Metabolite Identification
Common NameAdenosine
DescriptionAdenosine is a nucleoside that is composed of adenine and D-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate (cAMP). Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously adenosine causes transient heart block in the AV node. Due to the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Overdoses of adenosine intake (as a drug) can lead to several side effects including chest pain, feeling faint, shortness of breath, and tingling of the senses. Serious side effects include a worsening dysrhythmia and low blood pressure. When present in sufficiently high levels, adenosine can act as an immunotoxin and a metabotoxin. An immunotoxin disrupts, limits the function, or destroys immune cells. A metabotoxin is an endogenous metabolite that causes adverse health effects at chronically high levels. Chronically high levels of adenosine are associated with adenosine deaminase deficiency. Adenosine is a precursor to deoxyadenosine, which is a precursor to dATP. A buildup of dATP in cells inhibits ribonucleotide reductase and prevents DNA synthesis, so cells are unable to divide. Since developing T cells and B cells are some of the most mitotically active cells, they are unable to divide and propagate to respond to immune challenges. High levels of deoxyadenosine also lead to an increase in S-adenosylhomocysteine, which is toxic to immature lymphocytes.
Structure
Data?1582752109
Synonyms
Chemical FormulaC10H13N5O4
Average Molecular Weight267.2413
Monoisotopic Molecular Weight267.096753929
IUPAC Name(2R,3R,4S,5R)-2-(6-amino-9H-purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol
Traditional Nameadenosine
CAS Registry Number58-61-7
SMILES
NC1=C2N=CN([C@@H]3O[C@H](CO)[C@@H](O)[C@H]3O)C2=NC=N1
InChI Identifier
InChI=1S/C10H13N5O4/c11-8-5-9(13-2-12-8)15(3-14-5)10-7(18)6(17)4(1-16)19-10/h2-4,6-7,10,16-18H,1H2,(H2,11,12,13)/t4-,6-,7-,10-/m1/s1
InChI KeyOIRDTQYFTABQOQ-KQYNXXCUSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl moiety.
KingdomOrganic compounds
Super ClassNucleosides, nucleotides, and analogues
ClassPurine nucleosides
Sub ClassNot Available
Direct ParentPurine nucleosides
Alternative Parents
Substituents
  • Purine nucleoside
  • Glycosyl compound
  • N-glycosyl compound
  • 6-aminopurine
  • Pentose monosaccharide
  • Imidazopyrimidine
  • Purine
  • Aminopyrimidine
  • Monosaccharide
  • N-substituted imidazole
  • Pyrimidine
  • Imidolactam
  • Tetrahydrofuran
  • Azole
  • Imidazole
  • Heteroaromatic compound
  • Secondary alcohol
  • Organoheterocyclic compound
  • Azacycle
  • Oxacycle
  • Organic oxygen compound
  • Organic nitrogen compound
  • Alcohol
  • Organonitrogen compound
  • Hydrocarbon derivative
  • Organopnictogen compound
  • Organooxygen compound
  • Amine
  • Primary alcohol
  • Primary amine
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Ontology
Physiological effect
Disposition
Biological locationRoute of exposureSource
Process
Naturally occurring process
Role
Industrial applicationBiological roleIndirect biological role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point235.5 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility37 mg/mLHuman Metabolome Project
LogP-1.05HANSCH,C ET AL. (1995)
Experimental Chromatographic Properties

Experimental Collision Cross Sections

Adduct TypeData SourceCCS Value (Å2)Reference
[M-H]-Astarita_neg151.030932474
[M-H]-Baker162.13330932474
[M-H]-MetCCS_test_neg155.230932474
[M+H]+Astarita_pos151.330932474
[M+H]+Baker156.96730932474
[M+H]+MetCCS_test_pos155.7130932474
[M-H]-Not Available158.2http://allccs.zhulab.cn/database/detail?ID=AllCCS00000145
[M+H]+Not Available156.5http://allccs.zhulab.cn/database/detail?ID=AllCCS00000145
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular Locations
  • Extracellular
  • Mitochondria
  • Lysosome
Biospecimen Locations
  • Blood
  • Breast Milk
  • Cellular Cytoplasm
  • Cerebrospinal Fluid (CSF)
  • Feces
  • Saliva
  • Urine
Tissue Locations
  • All Tissues
  • Placenta
Pathways
Normal Concentrations
Abnormal Concentrations
Associated Disorders and Diseases
Disease References
Septic shock
  1. Kaufmann I, Hoelzl A, Schliephake F, Hummel T, Chouker A, Lysenko L, Peter K, Thiel M: Effects of adenosine on functions of polymorphonuclear leukocytes from patients with septic shock. Shock. 2007 Jan;27(1):25-31. [PubMed:17172976 ]
Irritable bowel syndrome
  1. Ponnusamy K, Choi JN, Kim J, Lee SY, Lee CH: Microbial community and metabolomic comparison of irritable bowel syndrome faeces. J Med Microbiol. 2011 Jun;60(Pt 6):817-27. doi: 10.1099/jmm.0.028126-0. Epub 2011 Feb 17. [PubMed:21330412 ]
Crohn's disease
  1. Kolho KL, Pessia A, Jaakkola T, de Vos WM, Velagapudi V: Faecal and Serum Metabolomics in Paediatric Inflammatory Bowel Disease. J Crohns Colitis. 2017 Mar 1;11(3):321-334. doi: 10.1093/ecco-jcc/jjw158. [PubMed:27609529 ]
Ulcerative colitis
  1. Kolho KL, Pessia A, Jaakkola T, de Vos WM, Velagapudi V: Faecal and Serum Metabolomics in Paediatric Inflammatory Bowel Disease. J Crohns Colitis. 2017 Mar 1;11(3):321-334. doi: 10.1093/ecco-jcc/jjw158. [PubMed:27609529 ]
Colorectal cancer
  1. Sinha R, Ahn J, Sampson JN, Shi J, Yu G, Xiong X, Hayes RB, Goedert JJ: Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations. PLoS One. 2016 Mar 25;11(3):e0152126. doi: 10.1371/journal.pone.0152126. eCollection 2016. [PubMed:27015276 ]
  2. Goedert JJ, Sampson JN, Moore SC, Xiao Q, Xiong X, Hayes RB, Ahn J, Shi J, Sinha R: Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 2014 Sep;35(9):2089-96. doi: 10.1093/carcin/bgu131. Epub 2014 Jul 18. [PubMed:25037050 ]
Alzheimer's disease
  1. Tsuruoka M, Hara J, Hirayama A, Sugimoto M, Soga T, Shankle WR, Tomita M: Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis. 2013 Oct;34(19):2865-72. doi: 10.1002/elps.201300019. Epub 2013 Sep 6. [PubMed:23857558 ]
Frontotemporal dementia
  1. Tsuruoka M, Hara J, Hirayama A, Sugimoto M, Soga T, Shankle WR, Tomita M: Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis. 2013 Oct;34(19):2865-72. doi: 10.1002/elps.201300019. Epub 2013 Sep 6. [PubMed:23857558 ]
Lewy body disease
  1. Tsuruoka M, Hara J, Hirayama A, Sugimoto M, Soga T, Shankle WR, Tomita M: Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis. 2013 Oct;34(19):2865-72. doi: 10.1002/elps.201300019. Epub 2013 Sep 6. [PubMed:23857558 ]
Eosinophilic esophagitis
  1. Slae, M., Huynh, H., Wishart, D.S. (2014). Analysis of 30 normal pediatric urine samples via NMR spectroscopy (unpublished work). NA.
Adenosine kinase deficiency
  1. Bjursell MK, Blom HJ, Cayuela JA, Engvall ML, Lesko N, Balasubramaniam S, Brandberg G, Halldin M, Falkenberg M, Jakobs C, Smith D, Struys E, von Dobeln U, Gustafsson CM, Lundeberg J, Wedell A: Adenosine kinase deficiency disrupts the methionine cycle and causes hypermethioninemia, encephalopathy, and abnormal liver function. Am J Hum Genet. 2011 Oct 7;89(4):507-15. doi: 10.1016/j.ajhg.2011.09.004. Epub 2011 Sep 28. [PubMed:21963049 ]
Adenylosuccinate lyase deficiency
  1. Donti TR, Cappuccio G, Hubert L, Neira J, Atwal PS, Miller MJ, Cardon AL, Sutton VR, Porter BE, Baumer FM, Wangler MF, Sun Q, Emrick LT, Elsea SH: Diagnosis of adenylosuccinate lyase deficiency by metabolomic profiling in plasma reveals a phenotypic spectrum. Mol Genet Metab Rep. 2016 Jul 27;8:61-6. doi: 10.1016/j.ymgmr.2016.07.007. eCollection 2016 Sep. [PubMed:27504266 ]
Associated OMIM IDs
DrugBank IDDB00640
Phenol Explorer Compound IDNot Available
FooDB IDFDB003554
KNApSAcK IDC00007444
Chemspider ID54923
KEGG Compound IDC00212
BioCyc IDADENOSINE
BiGG ID34273
Wikipedia LinkAdenosine
METLIN ID86
PubChem Compound60961
PDB IDNot Available
ChEBI ID16335
Food Biomarker OntologyNot Available
VMH IDADN
MarkerDB IDMDB00000024
Good Scents IDNot Available
References
Synthesis ReferenceLiao, Ben-ren; Yuan, Zhen-wen. Synthesis of adenosine from inosine. Huaxue Shiji (2006), 28(10), 633-634.
Material Safety Data Sheet (MSDS)Download (PDF)
General References

Only showing the first 10 proteins. There are 21 proteins in total.

Enzymes

General function:
Involved in hydrolase activity
Specific function:
Hydrolyzes extracellular nucleotides into membrane permeable nucleosides.
Gene Name:
NT5E
Uniprot ID:
P21589
Molecular weight:
57948.125
Reactions
Adenosine monophosphate + Water → Adenosine + Phosphatedetails
General function:
Involved in nucleotide binding
Specific function:
Dephosphorylates the 5' and 2'(3')-phosphates of deoxyribonucleotides. Helps to regulate adenosine levels (By similarity).
Gene Name:
NT5C1B
Uniprot ID:
Q96P26
Molecular weight:
68803.055
Reactions
Adenosine monophosphate + Water → Adenosine + Phosphatedetails
General function:
Involved in nucleotide binding
Specific function:
Dephosphorylates the 5' and 2'(3')-phosphates of deoxyribonucleotides and has a broad substrate specificity. Helps to regulate adenosine levels in heart during ischemia and hypoxia.
Gene Name:
NT5C1A
Uniprot ID:
Q9BXI3
Molecular weight:
41020.145
Reactions
Adenosine monophosphate + Water → Adenosine + Phosphatedetails
General function:
Involved in metal ion binding
Specific function:
Dephosphorylates the 5' and 2'(3')-phosphates of deoxyribonucleotides, with a preference for dUMP and dTMP, intermediate activity towards dGMP, and low activity towards dCMP and dAMP.
Gene Name:
NT5C
Uniprot ID:
Q8TCD5
Molecular weight:
Not Available
Reactions
Adenosine monophosphate + Water → Adenosine + Phosphatedetails
General function:
Involved in ATP binding
Specific function:
Required for the phosphorylation of the deoxyribonucleosides deoxycytidine (dC), deoxyguanosine (dG) and deoxyadenosine (dA). Has broad substrate specificity, and does not display selectivity based on the chirality of the substrate. It is also an essential enzyme for the phosphorylation of numerous nucleoside analogs widely employed as antiviral and chemotherapeutic agents.
Gene Name:
DCK
Uniprot ID:
P27707
Molecular weight:
30518.315
Reactions
Adenosine triphosphate + Adenosine → ADP + Adenosine monophosphatedetails
General function:
Involved in phosphatase activity
Specific function:
Dephosphorylates specifically the 5' and 2'(3')-phosphates of uracil and thymine deoxyribonucleotides, and so protects mitochondrial DNA replication from excess dTTP. Has only marginal activity towards dIMP and dGMP.
Gene Name:
NT5M
Uniprot ID:
Q9NPB1
Molecular weight:
Not Available
Reactions
Adenosine monophosphate + Water → Adenosine + Phosphatedetails
General function:
Involved in adenosine kinase activity
Specific function:
ATP dependent phosphorylation of adenosine and other related nucleoside analogs to monophosphate derivatives. Serves as a potential regulator of concentrations of extracellular adenosine and intracellular adenine nucleotides.
Gene Name:
ADK
Uniprot ID:
P55263
Molecular weight:
38702.93
Reactions
Adenosine triphosphate + Adenosine → ADP + Adenosine monophosphatedetails
References
  1. Boison D: Adenosine kinase, epilepsy and stroke: mechanisms and therapies. Trends Pharmacol Sci. 2006 Dec;27(12):652-8. Epub 2006 Oct 23. [PubMed:17056128 ]
General function:
Involved in adenosylhomocysteinase activity
Specific function:
Not Available
Gene Name:
AHCYL2
Uniprot ID:
Q96HN2
Molecular weight:
66592.445
Reactions
S-Adenosylhomocysteine + Water → Homocysteine + Adenosinedetails
Se-Adenosylselenohomocysteine + Water → Adenosine + Selenohomocysteinedetails
General function:
Involved in adenosylhomocysteinase activity
Specific function:
Adenosylhomocysteine is a competitive inhibitor of S-adenosyl-L-methionine-dependent methyl transferase reactions; therefore adenosylhomocysteinase may play a key role in the control of methylations via regulation of the intracellular concentration of adenosylhomocysteine.
Gene Name:
AHCY
Uniprot ID:
P23526
Molecular weight:
47715.715
Reactions
S-Adenosylhomocysteine + Water → Homocysteine + Adenosinedetails
Se-Adenosylselenohomocysteine + Water → Adenosine + Selenohomocysteinedetails
General function:
Involved in adenosylhomocysteinase activity
Specific function:
Not Available
Gene Name:
AHCYL1
Uniprot ID:
O43865
Molecular weight:
53753.0
Reactions
S-Adenosylhomocysteine + Water → Homocysteine + Adenosinedetails
Se-Adenosylselenohomocysteine + Water → Adenosine + Selenohomocysteinedetails

Only showing the first 10 proteins. There are 21 proteins in total.