Hmdb loader
You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2021-09-14 15:46:13 UTC
HMDB IDHMDB0000812
Secondary Accession Numbers
  • HMDB00812
Metabolite Identification
Common NameN-Acetyl-L-aspartic acid
DescriptionN-Acetyl-L-Aspartic acid (NAA) or N-Acetylaspartic acid, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-alpha-Acetyl-L-aspartic acid can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetyl-L-aspartic acid is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-aspartic acid. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618 ). About 85% of all human proteins and 68% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686 ). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468 ). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468 ). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylaspartate can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618 ). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free aspartic acid can also occur. In particular, N-Acetyl-L-aspartic acid can be synthesized in neurons from the amino acid aspartate and acetyl coenzyme A (acetyl CoA). Specifically, the enzyme known as aspartate N-acetyltransferase (EC 2.3.1.17) catalyzes the transfer of the acetyl group of acetyl CoA to the amino group of aspartate. N-Acetyl-L-aspartic acid is the second most concentrated molecule in the brain after the amino acid glutamate. The various functions served by N-acetylaspartic acid are still under investigation, but the primary proposed functions include (1) acting as a neuronal osmolyte that is involved in fluid balance in the brain, (2) serving as a source of acetate for lipid and myelin synthesis in oligodendrocytes (the glial cells that myelinate neuronal axons), (3) serving as a precursor for the synthesis of the important dipeptide neurotransmitter N-acetylaspartylglutamate (NAAG), and (4) playing a potential role in energy production from the amino acid glutamate in neuronal mitochondria. High neurotransmitter (i.e. N-acetylaspartic acid) levels can lead to abnormal neural signaling, delayed or arrested intellectual development, and difficulties with general motor skills. When present in sufficiently high levels, N-acetylaspartic acid can be a neurotoxin, an acidogen, and a metabotoxin. A neurotoxin is a compound that disrupts or attacks neural tissue. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of N-acetylaspartic acid are associated with Canavan disease. Because N-acetylaspartic acid functions as an organic acid and high levels of organic acids can lead to a condition known as acidosis. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. Infants with acidosis have symptoms that include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart abnormalities, seizures, coma, and possibly death. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and flapping tremors. Many N-acetylamino acids, including N-acetylaspartic acid, are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986 ; PMID: 20613759 ). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557 ).
Structure
Data?1582752158
Synonyms
ValueSource
(S)-2-(Acetylamino)butanedioic acidChEBI
(S)-2-(Acetylamino)succinic acidChEBI
Acetyl-L-aspartic acidChEBI
Acetylaspartic acidChEBI
L-N-Acetylaspartic acidChEBI
N-Acetylaspartic acidChEBI
NAAChEBI
(S)-2-(Acetylamino)butanedioateGenerator
(S)-2-(Acetylamino)succinateGenerator
Acetyl-L-aspartateGenerator
AcetylaspartateGenerator
L-N-AcetylaspartateGenerator
N-AcetylaspartateGenerator
N-Acetyl-L-aspartateGenerator
(2S)-2-AcetamidobutanedioateHMDB
(2S)-2-Acetamidobutanedioic acidHMDB
N-Acetyl-S-aspartateHMDB
N-Acetyl-S-aspartic acidHMDB
N-Acetyl aspartateHMDB
N-Acetylaspartate, monopotassium saltHMDB
Acetyl aspartic acidHMDB
Chemical FormulaC6H9NO5
Average Molecular Weight175.1394
Monoisotopic Molecular Weight175.048072403
IUPAC Name(2S)-2-acetamidobutanedioic acid
Traditional Nameacetyl-L-aspartic acid
CAS Registry Number997-55-7
SMILES
CC(=O)N[C@@H](CC(O)=O)C(O)=O
InChI Identifier
InChI=1S/C6H9NO5/c1-3(8)7-4(6(11)12)2-5(9)10/h4H,2H2,1H3,(H,7,8)(H,9,10)(H,11,12)/t4-/m0/s1
InChI KeyOTCCIMWXFLJLIA-BYPYZUCNSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as aspartic acid and derivatives. Aspartic acid and derivatives are compounds containing an aspartic acid or a derivative thereof resulting from reaction of aspartic acid at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassCarboxylic acids and derivatives
Sub ClassAmino acids, peptides, and analogues
Direct ParentAspartic acid and derivatives
Alternative Parents
Substituents
  • Aspartic acid or derivatives
  • N-acyl-alpha-amino acid
  • N-acyl-alpha amino acid or derivatives
  • N-acyl-l-alpha-amino acid
  • Dicarboxylic acid or derivatives
  • Fatty acid
  • Acetamide
  • Carboxamide group
  • Secondary carboxylic acid amide
  • Carboxylic acid
  • Carbonyl group
  • Organooxygen compound
  • Organonitrogen compound
  • Organopnictogen compound
  • Organic oxygen compound
  • Organic nitrogen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
Physiological effect

Adverse health effect

Disposition

Biological location

Source

Route of exposure

Process

Naturally occurring process

Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point137 - 140 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility675 mg/mLNot Available
LogPNot AvailableNot Available
Experimental Spectral Properties

Experimental Collision Cross Sections

PredictorAdduct TypeData SourceCCS Value (Å2)Reference
DeepCCS[M-H]-MetCCS_train_neg129.21230932474
AllCCS[M-H]-Not Available130.8http://allccs.zhulab.cn/database/detail?ID=AllCCS00000034
Predicted Molecular Properties
PropertyValueSource
Water Solubility21.1 g/LALOGPS
logP10(-0.79) g/LALOGPS
logP10(-1.4) g/LChemAxon
logS10(-0.92) g/LALOGPS
pKa (Strongest Acidic)3.41ChemAxon
pKa (Strongest Basic)-2ChemAxon
Physiological Charge-2ChemAxon
Hydrogen Acceptor Count5ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area103.7 ŲChemAxon
Rotatable Bond Count4ChemAxon
Refractivity35.98 m³·mol⁻¹ChemAxon
Polarizability15.29 ųChemAxon
Number of Rings0ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Predicted Spectral Properties

Predicted Collision Cross Sections

PredictorAdduct TypeCCS Value (Å2)Reference
DarkChem[M+H]+140.14331661259
DarkChem[M-H]-132.85431661259
AllCCS[M+H]+139.65132859911
AllCCS[M-H]-132.72732859911

Predicted Kovats Retention Indices

Derivatized

Derivative Name / StructureSMILESKovats RI ValueColumn TypeReference
N-Acetyl-L-aspartic acid,1TMS,#1CC(=O)N[C@@H](CC(=O)O[Si](C)(C)C)C(=O)O1567.1Semi standard non polarhttps://arxiv.org/abs/1905.12712
N-Acetyl-L-aspartic acid,1TMS,#2CC(=O)N[C@@H](CC(=O)O)C(=O)O[Si](C)(C)C1525.7Semi standard non polarhttps://arxiv.org/abs/1905.12712
N-Acetyl-L-aspartic acid,1TMS,#3CC(=O)N([C@@H](CC(=O)O)C(=O)O)[Si](C)(C)C1623.5Semi standard non polarhttps://arxiv.org/abs/1905.12712
N-Acetyl-L-aspartic acid,2TMS,#1CC(=O)N[C@@H](CC(=O)O[Si](C)(C)C)C(=O)O[Si](C)(C)C1667.9Semi standard non polarhttps://arxiv.org/abs/1905.12712
N-Acetyl-L-aspartic acid,2TMS,#2CC(=O)N([C@@H](CC(=O)O[Si](C)(C)C)C(=O)O)[Si](C)(C)C1654.7Semi standard non polarhttps://arxiv.org/abs/1905.12712
N-Acetyl-L-aspartic acid,2TMS,#3CC(=O)N([C@@H](CC(=O)O)C(=O)O[Si](C)(C)C)[Si](C)(C)C1646.7Semi standard non polarhttps://arxiv.org/abs/1905.12712
N-Acetyl-L-aspartic acid,1TBDMS,#1CC(=O)N[C@@H](CC(=O)O[Si](C)(C)C(C)(C)C)C(=O)O1824.7Semi standard non polarhttps://arxiv.org/abs/1905.12712
N-Acetyl-L-aspartic acid,1TBDMS,#2CC(=O)N[C@@H](CC(=O)O)C(=O)O[Si](C)(C)C(C)(C)C1781.0Semi standard non polarhttps://arxiv.org/abs/1905.12712
N-Acetyl-L-aspartic acid,1TBDMS,#3CC(=O)N([C@@H](CC(=O)O)C(=O)O)[Si](C)(C)C(C)(C)C1849.9Semi standard non polarhttps://arxiv.org/abs/1905.12712
N-Acetyl-L-aspartic acid,2TBDMS,#1CC(=O)N[C@@H](CC(=O)O[Si](C)(C)C(C)(C)C)C(=O)O[Si](C)(C)C(C)(C)C2095.1Semi standard non polarhttps://arxiv.org/abs/1905.12712
N-Acetyl-L-aspartic acid,2TBDMS,#2CC(=O)N([C@@H](CC(=O)O[Si](C)(C)C(C)(C)C)C(=O)O)[Si](C)(C)C(C)(C)C2126.8Semi standard non polarhttps://arxiv.org/abs/1905.12712
N-Acetyl-L-aspartic acid,2TBDMS,#3CC(=O)N([C@@H](CC(=O)O)C(=O)O[Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C2093.7Semi standard non polarhttps://arxiv.org/abs/1905.12712
Spectra

GC-MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Experimental GC-MSGC-MS Spectrum - N-Acetyl-L-aspartic acid GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (Non-derivatized)splash10-0cdi-0910000000-80f173aa655a9e8604b52014-06-16HMDB team, MONA, MassBankView Spectrum
Experimental GC-MSGC-MS Spectrum - N-Acetyl-L-aspartic acid GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (Non-derivatized)splash10-008a-0930000000-63ecd768773360e392722014-06-16HMDB team, MONA, MassBankView Spectrum
Experimental GC-MSGC-MS Spectrum - N-Acetyl-L-aspartic acid GC-MS (3 TMS)splash10-001i-0950000000-beff64b09b14e79c535c2014-06-16HMDB team, MONA, MassBankView Spectrum
Experimental GC-MSGC-MS Spectrum - N-Acetyl-L-aspartic acid GC-EI-TOF (Non-derivatized)splash10-0cdi-0910000000-80f173aa655a9e8604b52017-09-12HMDB team, MONA, MassBankView Spectrum
Experimental GC-MSGC-MS Spectrum - N-Acetyl-L-aspartic acid GC-EI-TOF (Non-derivatized)splash10-008a-0930000000-63ecd768773360e392722017-09-12HMDB team, MONA, MassBankView Spectrum
Experimental GC-MSGC-MS Spectrum - N-Acetyl-L-aspartic acid GC-MS (Non-derivatized)splash10-001i-0950000000-beff64b09b14e79c535c2017-09-12HMDB team, MONA, MassBankView Spectrum
Experimental GC-MSGC-MS Spectrum - N-Acetyl-L-aspartic acid GC-EI-TOF (Non-derivatized)splash10-0pvj-0910000000-8952da198dfa2ecb7e212017-09-12HMDB team, MONA, MassBankView Spectrum
Experimental GC-MSGC-MS Spectrum - N-Acetyl-L-aspartic acid GC-EI-TOF (Non-derivatized)splash10-01x1-0930000000-ac192f128bc253b6c2992017-09-12HMDB team, MONA, MassBankView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - N-Acetyl-L-aspartic acid GC-MS (Non-derivatized) - 70eV, Positivesplash10-000x-9400000000-e45e6641c1b4fdac03e72017-09-01Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - N-Acetyl-L-aspartic acid GC-MS (2 TMS) - 70eV, Positivesplash10-00dl-9541000000-1ca7edd5f216e43553832017-10-06Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - N-Acetyl-L-aspartic acid GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - N-Acetyl-L-aspartic acid GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12Wishart LabView Spectrum

MS/MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-aspartic acid Quattro_QQQ 10V, Positive-QTOF (Annotated)splash10-001i-2900000000-73b8786c25f0b59927c62012-07-24HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-aspartic acid Quattro_QQQ 25V, Positive-QTOF (Annotated)splash10-00dr-9000000000-f7f7d5d562cbcf3f69fa2012-07-24HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-aspartic acid Quattro_QQQ 40V, Positive-QTOF (Annotated)splash10-006x-9000000000-01988ea29217a99519e12012-07-24HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-aspartic acid LC-ESI-QQ (API3000, Applied Biosystems) 10V, Negative-QTOFsplash10-00di-0900000000-e8fc0d2735d5a8ce18182012-08-31HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-aspartic acid LC-ESI-QQ (API3000, Applied Biosystems) 20V, Negative-QTOFsplash10-000i-9800000000-10648516e9c8e71f36ec2012-08-31HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-aspartic acid LC-ESI-QQ (API3000, Applied Biosystems) 30V, Negative-QTOFsplash10-000i-9000000000-5a1edaf86830da3de4a62012-08-31HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-aspartic acid LC-ESI-QQ (API3000, Applied Biosystems) 40V, Negative-QTOFsplash10-0a4r-9000000000-be6d8862f50bbbceda292012-08-31HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-aspartic acid LC-ESI-QQ (API3000, Applied Biosystems) 50V, Negative-QTOFsplash10-0a4l-9000000000-d8e588abce3e75dbb9e62012-08-31HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-aspartic acid LC-ESI-QQ , negative-QTOFsplash10-00di-0900000000-e8fc0d2735d5a8ce18182017-09-14HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-aspartic acid LC-ESI-QQ , negative-QTOFsplash10-000i-9800000000-10648516e9c8e71f36ec2017-09-14HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-aspartic acid LC-ESI-QQ , negative-QTOFsplash10-000i-9000000000-7d599142d426107460772017-09-14HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-aspartic acid LC-ESI-QQ , negative-QTOFsplash10-0a4r-9000000000-be6d8862f50bbbceda292017-09-14HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-aspartic acid LC-ESI-QQ , negative-QTOFsplash10-0a4l-9000000000-d8e588abce3e75dbb9e62017-09-14HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-aspartic acid , negative-QTOFsplash10-000i-9600000000-f176de6becb0016bc74d2017-09-14HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-aspartic acid , positive-QTOFsplash10-00or-1900000000-26dc8573491416b97a272017-09-14HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-aspartic acid 35V, Negative-QTOFsplash10-000i-9600000000-0cb75d9cdfce88068fbe2021-09-20HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-aspartic acid 10V, Negative-QTOFsplash10-052r-9400000000-327e451ed714e29b3e492021-09-20HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-aspartic acid 35V, Negative-QTOFsplash10-004i-0900000000-7f8ca1d0dd5f77ffad962021-09-20HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-aspartic acid 30V, Negative-QTOFsplash10-0a4r-9000000000-a67943ff273546b3c4352021-09-20HMDB team, MONAView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Acetyl-L-aspartic acid 10V, Positive-QTOFsplash10-0a4i-0900000000-7208631bdea4f3ac52f62017-09-01Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Acetyl-L-aspartic acid 20V, Positive-QTOFsplash10-06ei-7900000000-10e9adf8706f97c39bed2017-09-01Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Acetyl-L-aspartic acid 40V, Positive-QTOFsplash10-02h3-9200000000-fb40f9d409269d43e36c2017-09-01Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Acetyl-L-aspartic acid 10V, Negative-QTOFsplash10-05gi-0900000000-86f974a42eb88002ebd72017-09-01Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Acetyl-L-aspartic acid 20V, Negative-QTOFsplash10-06si-3900000000-06245050379b733be5662017-09-01Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Acetyl-L-aspartic acid 40V, Negative-QTOFsplash10-0a4l-9100000000-e47b08fe049f171608672017-09-01Wishart LabView Spectrum

NMR Spectra

Spectrum TypeDescriptionDeposition DateSourceView
Predicted 1D NMR13C NMR Spectrum (1D, 100 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 100 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 1000 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 1000 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 200 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 200 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 300 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 300 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 400 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 400 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 500 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 500 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 600 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 600 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 700 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 700 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 800 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 800 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 900 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 900 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Experimental 1D NMR13C NMR Spectrum (1D, 400 MHz, H2O, experimental)2021-10-10Wishart LabView Spectrum
Experimental 2D NMR[1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental)2012-12-05Wishart LabView Spectrum
Biological Properties
Cellular Locations
  • Cytoplasm
  • Mitochondria
Biospecimen Locations
  • Blood
  • Cerebrospinal Fluid (CSF)
  • Feces
  • Saliva
  • Urine
Tissue Locations
  • Basal Ganglia
  • Brain
  • Fibroblasts
  • Neuron
  • Placenta
  • Prostate
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothNormal details
BloodDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
Cerebrospinal Fluid (CSF)Detected and Quantified0.81 +/- 0.38 uMAdult (>18 years old)BothNormal details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
SalivaDetected and Quantified0.827 +/- 0.521 uMAdult (>18 years old)Female
Normal
    • Sugimoto et al. (...
details
SalivaDetected and Quantified1.08 +/- 0.586 uMAdult (>18 years old)Female
Normal
    • Sugimoto et al. (...
details
SalivaDetected and Quantified1.54 +/- 1.13 uMAdult (>18 years old)Female
Normal
    • Sugimoto et al. (...
details
SalivaDetected and Quantified0.658 +/- 0.331 uMAdult (>18 years old)Male
Normal
    • Sugimoto et al. (...
details
UrineDetected and Quantified10.0 +/- 2.1 umol/mmol creatinineChildren (1-13 years old)Not SpecifiedNormal details
UrineDetected and Quantified33.2 (4.9-65.5) umol/mmol creatinineNewborn (0-30 days old)BothNormal details
UrineDetected and Quantified18.0 (0.1-43.9) umol/mmol creatinineInfant (0-1 year old)BothNormal details
UrineDetected and Quantified10.3 (6.1-15.4) umol/mmol creatinineChildren (1-13 years old)BothNormal details
UrineDetected and Quantified7.7 (3.1-18.7) umol/mmol creatinineAdolescent (13-18 years old)BothNormal details
UrineDetected and Quantified10.657 +/- 6.879 umol/mmol creatinineChildren (1 - 13 years old)Not Specified
Normal
    • Mordechai, Hien, ...
details
UrineDetected and Quantified2.9-5.4 umol/mmol creatinineAdult (>18 years old)FemaleNormal details
UrineDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothNormal details
UrineDetected and Quantified11.3 umol/mmol creatinineChildren (1-13 years old)BothNormal details
UrineDetected and Quantified1.65 +/- 1.50 umol/mmol creatinineChildren (1-13 years old)BothNormal details
UrineDetected and Quantified0.83 +/- 0.83 umol/mmol creatinineAdolescent (13-18 years old)BothNormal details
UrineDetected and Quantified0.40 +/- 0.43 umol/mmol creatinineAdult (>18 years old)BothNormal details
UrineDetected and Quantified<44.29 umol/mmol creatinineChildren (1 - 18 years old)Both
Normal
    • BC Children's Hos...
details
UrineDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothNormal details
UrineDetected and Quantified4.0 (1.3-7.0) umol/mmol creatinineAdult (>18 years old)Both
Normal
details
UrineDetected and Quantified2.6-3.9 umol/mmol creatinineAdult (>18 years old)MaleNormal details
UrineDetected and Quantified4.66 +/- 1.14 umol/mmol creatinineAdult (>18 years old)MaleNormal details
UrineDetected and Quantified7.0 +/- 1.84 umol/mmol creatinineAdult (>18 years old)FemaleNormal details
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified920-1370 uMChildren (1-13 years old)Not SpecifiedCanavan disease details
BloodDetected and Quantified16.96 +/- 19.57 uMAdult (>18 years old)BothCanavan disease details
BloodDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Schizophrenia
details
Cerebrospinal Fluid (CSF)Detected and Quantified0.80 +/- 0.62 uMAdult (>18 years old)BothSchizophrenia details
Cerebrospinal Fluid (CSF)Detected and Quantified380.0 (0.0-760.0) uMAdult (>18 years old)BothCanavan Disease details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Not Specifiedobese details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothColorectal Cancer details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Colorectal cancer
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Colorectal cancer
details
UrineDetected and Quantified1299.5-3680.9 umol/mmol creatinineChildren (1-13 years old)Not SpecifiedCanavan disease details
UrineDetected and Quantified14.079 +/- 11.359 umol/mmol creatinineChildren (1 - 13 years old)Not Specified
Eosinophilic esophagitis
    • Mordechai, Hien, ...
details
UrineDetected and Quantified1872.03 +/- 631.86 umol/mmol creatinineAdult (>18 years old)BothCanavan disease details
UrineDetected and Quantified306.820 +/- 184.100 umol/mmol creatinineChildren (1-13 years old)Not AvailableCanavan disease details
UrineDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Bladder cancer
details
Associated Disorders and Diseases
Disease References
Canavan disease
  1. Rothstein JD, Tsai G, Kuncl RW, Clawson L, Cornblath DR, Drachman DB, Pestronk A, Stauch BL, Coyle JT: Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol. 1990 Jul;28(1):18-25. [PubMed:2375630 ]
  2. Tavazzi B, Lazzarino G, Leone P, Amorini AM, Bellia F, Janson CG, Di Pietro V, Ceccarelli L, Donzelli S, Francis JS, Giardina B: Simultaneous high performance liquid chromatographic separation of purines, pyrimidines, N-acetylated amino acids, and dicarboxylic acids for the chemical diagnosis of inborn errors of metabolism. Clin Biochem. 2005 Nov;38(11):997-1008. Epub 2005 Sep 1. [PubMed:16139832 ]
  3. Matalon R, Michals K, Sebesta D, Deanching M, Gashkoff P, Casanova J: Aspartoacylase deficiency and N-acetylaspartic aciduria in patients with Canavan disease. Am J Med Genet. 1988 Feb;29(2):463-71. doi: 10.1002/ajmg.1320290234. [PubMed:3354621 ]
  4. Matalon R, Kaul R, Casanova J, Michals K, Johnson A, Rapin I, Gashkoff P, Deanching M: SSIEM Award. Aspartoacylase deficiency: the enzyme defect in Canavan disease. J Inherit Metab Dis. 1989;12 Suppl 2:329-31. [PubMed:2512436 ]
Schizophrenia
  1. Do KQ, Lauer CJ, Schreiber W, Zollinger M, Gutteck-Amsler U, Cuenod M, Holsboer F: gamma-Glutamylglutamine and taurine concentrations are decreased in the cerebrospinal fluid of drug-naive patients with schizophrenic disorders. J Neurochem. 1995 Dec;65(6):2652-62. [PubMed:7595563 ]
  2. Xuan J, Pan G, Qiu Y, Yang L, Su M, Liu Y, Chen J, Feng G, Fang Y, Jia W, Xing Q, He L: Metabolomic profiling to identify potential serum biomarkers for schizophrenia and risperidone action. J Proteome Res. 2011 Dec 2;10(12):5433-43. doi: 10.1021/pr2006796. Epub 2011 Nov 8. [PubMed:22007635 ]
Obesity
  1. Haro C, Montes-Borrego M, Rangel-Zuniga OA, Alcala-Diaz JF, Gomez-Delgado F, Perez-Martinez P, Delgado-Lista J, Quintana-Navarro GM, Tinahones FJ, Landa BB, Lopez-Miranda J, Camargo A, Perez-Jimenez F: Two Healthy Diets Modulate Gut Microbial Community Improving Insulin Sensitivity in a Human Obese Population. J Clin Endocrinol Metab. 2016 Jan;101(1):233-42. doi: 10.1210/jc.2015-3351. Epub 2015 Oct 27. [PubMed:26505825 ]
Colorectal cancer
  1. Brown DG, Rao S, Weir TL, O'Malia J, Bazan M, Brown RJ, Ryan EP: Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016 Jun 6;4:11. doi: 10.1186/s40170-016-0151-y. eCollection 2016. [PubMed:27275383 ]
  2. Sinha R, Ahn J, Sampson JN, Shi J, Yu G, Xiong X, Hayes RB, Goedert JJ: Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations. PLoS One. 2016 Mar 25;11(3):e0152126. doi: 10.1371/journal.pone.0152126. eCollection 2016. [PubMed:27015276 ]
  3. Goedert JJ, Sampson JN, Moore SC, Xiao Q, Xiong X, Hayes RB, Ahn J, Shi J, Sinha R: Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 2014 Sep;35(9):2089-96. doi: 10.1093/carcin/bgu131. Epub 2014 Jul 18. [PubMed:25037050 ]
Eosinophilic esophagitis
  1. (). Mordechai, Hien, and David S. Wishart. .
Associated OMIM IDs
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB022260
KNApSAcK IDNot Available
Chemspider ID58576
KEGG Compound IDC01042
BioCyc IDCPD-420
BiGG ID36685
Wikipedia LinkN-acetylaspartic_acid
METLIN ID5776
PubChem Compound65065
PDB IDNot Available
ChEBI ID21547
Food Biomarker OntologyNot Available
VMH IDNACASP
MarkerDB IDMDB00000259
Good Scents IDNot Available
References
Synthesis ReferenceMontoro, Fernando; Calatayud, Jose; Vilar, Angel. N-Acetyl-L-aspartic acid. Span. (1983), 5 pp.
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Sass JO, Mohr V, Olbrich H, Engelke U, Horvath J, Fliegauf M, Loges NT, Schweitzer-Krantz S, Moebus R, Weiler P, Kispert A, Superti-Furga A, Wevers RA, Omran H: Mutations in ACY1, the gene encoding aminoacylase 1, cause a novel inborn error of metabolism. Am J Hum Genet. 2006 Mar;78(3):401-9. Epub 2006 Jan 18. [PubMed:16465618 ]
  2. Kaul R, Gao GP, Balamurugan K, Matalon R: Cloning of the human aspartoacylase cDNA and a common missense mutation in Canavan disease. Nat Genet. 1993 Oct;5(2):118-23. [PubMed:8252036 ]
  3. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. doi: 10.1038/nature07762. [PubMed:19212411 ]
  4. Guneral F, Bachmann C: Age-related reference values for urinary organic acids in a healthy Turkish pediatric population. Clin Chem. 1994 Jun;40(6):862-6. [PubMed:8087979 ]
  5. Wevers RA, Engelke U, Wendel U, de Jong JG, Gabreels FJ, Heerschap A: Standardized method for high-resolution 1H-NMR of cerebrospinal fluid. Clin Chem. 1995 May;41(5):744-51. [PubMed:7729054 ]
  6. Tedeschi G, Bonavita S, Banerjee TK, Virta A, Schiffmann R: Diffuse central neuronal involvement in Fabry disease: a proton MRS imaging study. Neurology. 1999 May 12;52(8):1663-7. [PubMed:10331696 ]
  7. Tacke U, Olbrich H, Sass JO, Fekete A, Horvath J, Ziyeh S, Kleijer WJ, Rolland MO, Fisher S, Payne S, Vargiami E, Zafeiriou DI, Omran H: Possible genotype-phenotype correlations in children with mild clinical course of Canavan disease. Neuropediatrics. 2005 Aug;36(4):252-5. [PubMed:16138249 ]
  8. Rocca MA, Mezzapesa DM, Falini A, Ghezzi A, Martinelli V, Scotti G, Comi G, Filippi M: Evidence for axonal pathology and adaptive cortical reorganization in patients at presentation with clinically isolated syndromes suggestive of multiple sclerosis. Neuroimage. 2003 Apr;18(4):847-55. [PubMed:12725761 ]
  9. Izumiyama H, Abe T, Tanioka D, Fukuda A, Kunii N: Clinicopathological examination of glioma by proton magnetic resonance spectroscopy background. Brain Tumor Pathol. 2004;21(1):39-46. [PubMed:15696968 ]
  10. Bal D, Gryff-Keller A, Gradowska W: Absolute configuration of N-acetylaspartate in urine from patients with Canavan disease. J Inherit Metab Dis. 2005;28(4):607-9. [PubMed:15902566 ]
  11. Manji HK, Moore GJ, Chen G: Clinical and preclinical evidence for the neurotrophic effects of mood stabilizers: implications for the pathophysiology and treatment of manic-depressive illness. Biol Psychiatry. 2000 Oct 15;48(8):740-54. [PubMed:11063971 ]
  12. Vermathen P, Laxer KD, Matson GB, Weiner MW: Hippocampal structures: anteroposterior N-acetylaspartate differences in patients with epilepsy and control subjects as shown with proton MR spectroscopic imaging. Radiology. 2000 Feb;214(2):403-10. [PubMed:10671587 ]
  13. Clementi V, Tonon C, Lodi R, Malucelli E, Barbiroli B, Iotti S: Assessment of glutamate and glutamine contribution to in vivo N-acetylaspartate quantification in human brain by (1)H-magnetic resonance spectroscopy. Magn Reson Med. 2005 Dec;54(6):1333-9. [PubMed:16265633 ]
  14. Rothstein JD, Tsai G, Kuncl RW, Clawson L, Cornblath DR, Drachman DB, Pestronk A, Stauch BL, Coyle JT: Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol. 1990 Jul;28(1):18-25. [PubMed:2375630 ]
  15. Surendran S, Matalon KM, Szucs S, Tyring SK, Matalon R: Metabolic changes in the knockout mouse for Canavan's disease: implications for patients with Canavan's disease. J Child Neurol. 2003 Sep;18(9):611-5. [PubMed:14572139 ]
  16. Gordon N: Canavan disease: a review of recent developments. Eur J Paediatr Neurol. 2001;5(2):65-9. [PubMed:11589315 ]
  17. Zhu XH, Chen W: Observed BOLD effects on cerebral metabolite resonances in human visual cortex during visual stimulation: a functional (1)H MRS study at 4 T. Magn Reson Med. 2001 Nov;46(5):841-7. [PubMed:11675633 ]
  18. Lam WW, Wang ZJ, Zhao H, Berry GT, Kaplan P, Gibson J, Kaplan BS, Bilaniuk LT, Hunter JV, Haselgrove JC, Zimmermann RA: 1H MR spectroscopy of the basal ganglia in childhood: a semiquantitative analysis. Neuroradiology. 1998 May;40(5):315-23. [PubMed:9638674 ]
  19. Martin RC, Sawrie S, Hugg J, Gilliam F, Faught E, Kuzniecky R: Cognitive correlates of 1H MRSI-detected hippocampal abnormalities in temporal lobe epilepsy. Neurology. 1999 Dec 10;53(9):2052-8. [PubMed:10599780 ]
  20. Trope I, Lopez-Villegas D, Lenkinski RE: Magnetic resonance imaging and spectroscopy of regional brain structure in a 10-year-old boy with elevated blood lead levels. Pediatrics. 1998 Jun;101(6):E7. [PubMed:9606249 ]
  21. Kvittingen EA, Guldal G, Borsting S, Skalpe IO, Stokke O, Jellum E: N-acetylaspartic aciduria in a child with a progressive cerebral atrophy. Clin Chim Acta. 1986 Aug 15;158(3):217-27. [PubMed:3769199 ]
  22. Gideon P, Henriksen O, Sperling B, Christiansen P, Olsen TS, Jorgensen HS, Arlien-Soborg P: Early time course of N-acetylaspartate, creatine and phosphocreatine, and compounds containing choline in the brain after acute stroke. A proton magnetic resonance spectroscopy study. Stroke. 1992 Nov;23(11):1566-72. [PubMed:1440704 ]
  23. Elshenawy S, Pinney SE, Stuart T, Doulias PT, Zura G, Parry S, Elovitz MA, Bennett MJ, Bansal A, Strauss JF 3rd, Ischiropoulos H, Simmons RA: The Metabolomic Signature of the Placenta in Spontaneous Preterm Birth. Int J Mol Sci. 2020 Feb 4;21(3). pii: ijms21031043. doi: 10.3390/ijms21031043. [PubMed:32033212 ]
  24. Tanaka H, Sirich TL, Plummer NS, Weaver DS, Meyer TW: An Enlarged Profile of Uremic Solutes. PLoS One. 2015 Aug 28;10(8):e0135657. doi: 10.1371/journal.pone.0135657. eCollection 2015. [PubMed:26317986 ]
  25. Van Damme P, Hole K, Pimenta-Marques A, Helsens K, Vandekerckhove J, Martinho RG, Gevaert K, Arnesen T: NatF contributes to an evolutionary shift in protein N-terminal acetylation and is important for normal chromosome segregation. PLoS Genet. 2011 Jul;7(7):e1002169. doi: 10.1371/journal.pgen.1002169. Epub 2011 Jul 7. [PubMed:21750686 ]
  26. Ree R, Varland S, Arnesen T: Spotlight on protein N-terminal acetylation. Exp Mol Med. 2018 Jul 27;50(7):1-13. doi: 10.1038/s12276-018-0116-z. [PubMed:30054468 ]
  27. Toyohara T, Akiyama Y, Suzuki T, Takeuchi Y, Mishima E, Tanemoto M, Momose A, Toki N, Sato H, Nakayama M, Hozawa A, Tsuji I, Ito S, Soga T, Abe T: Metabolomic profiling of uremic solutes in CKD patients. Hypertens Res. 2010 Sep;33(9):944-52. doi: 10.1038/hr.2010.113. Epub 2010 Jul 8. [PubMed:20613759 ]
  28. Vanholder R, Baurmeister U, Brunet P, Cohen G, Glorieux G, Jankowski J: A bench to bedside view of uremic toxins. J Am Soc Nephrol. 2008 May;19(5):863-70. doi: 10.1681/ASN.2007121377. Epub 2008 Feb 20. [PubMed:18287557 ]

Enzymes

General function:
Involved in hydrolase activity, acting on ester bonds
Specific function:
Catalyzes the deacetylation of N-acetylaspartic acid (NAA) to produce acetate and L-aspartate. NAA occurs in high concentration in brain and its hydrolysis NAA plays a significant part in the maintenance of intact white matter. In other tissues it act as a scavenger of NAA from body fluids.
Gene Name:
ASPA
Uniprot ID:
P45381
Molecular weight:
35734.79
Reactions
N-Acetyl-L-aspartic acid + Water → Acetic acid + L-Aspartic aciddetails
General function:
Involved in hydrolase activity, acting on ester bonds
Specific function:
Plays an important role in deacetylating mercapturic acids in kidney proximal tubules (By similarity).
Gene Name:
ACY3
Uniprot ID:
Q96HD9
Molecular weight:
Not Available
Reactions
N-Acetyl-L-aspartic acid + Water → Acetic acid + L-Aspartic aciddetails
General function:
Involved in catalytic activity
Specific function:
Catalyzes the synthesis of N-acetylaspartyl-glutamate (NAAG).
Gene Name:
RIMKLA
Uniprot ID:
Q8IXN7
Molecular weight:
42863.8
Reactions
Adenosine triphosphate + N-Acetyl-L-aspartic acid + L-Glutamic acid → ADP + Phosphate + N-acetylaspartyl-glutamatedetails
General function:
Involved in catalytic activity
Specific function:
Catalyzes the synthesis of beta-citryl-glutamate and N-acetyl-aspartyl-glutamate. Beta-citryl-glutamate is synthesized more efficiently than N-acetyl-aspartyl-glutamate (By similarity).
Gene Name:
RIMKLB
Uniprot ID:
Q9ULI2
Molecular weight:
42463.575
Reactions
Adenosine triphosphate + N-Acetyl-L-aspartic acid + L-Glutamic acid → ADP + Phosphate + N-acetylaspartyl-glutamatedetails
General function:
Not Available
Specific function:
Plays a role in the regulation of lipogenesis by producing N-acetylaspartate acid (NAA), a brain-specific metabolite. NAA occurs in high concentration in brain and its hydrolysis plays a significant part in the maintenance of intact white matter. Promotes dopamine uptake by regulating TNF-alpha expression. Attenuates methamphetamine-induced inhibition of dopamine uptake.
Gene Name:
NAT8L
Uniprot ID:
Q8N9F0
Molecular weight:
32836.875
Reactions
Acetyl-CoA + L-Aspartic acid → Coenzyme A + N-Acetyl-L-aspartic aciddetails