Hmdb loader
Show more...Show more...Show more...Show more...Show more...
Record Information
Version5.0
StatusExpected but not Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2022-03-07 02:49:08 UTC
HMDB IDHMDB0001206
Secondary Accession Numbers
  • HMDB01206
Metabolite Identification
Common NameAcetyl-CoA
DescriptionThe main function of coenzyme A is to carry acyl groups (such as the acetyl group) or thioesters. Acetyl-CoA is an important molecule itself. It is the precursor to HMG CoA, which is a vital component in cholesterol and ketone synthesis. (wikipedia). acetyl CoA participates in the biosynthesis of fatty acids and sterols, in the oxidation of fatty acids and in the metabolism of many amino acids. It also acts as a biological acetylating agent.
Structure
Thumb
Synonyms
Chemical FormulaC23H38N7O17P3S
Average Molecular Weight809.571
Monoisotopic Molecular Weight809.125773051
IUPAC Name{[(2R,3S,4R,5R)-2-({[({[(3R)-3-[(2-{[2-(acetylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}methyl)-5-(6-amino-9H-purin-9-yl)-4-hydroxyoxolan-3-yl]oxy}phosphonic acid
Traditional Nameacetyl-CoA
CAS Registry Number72-89-9
SMILES
CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP(O)(=O)OP(O)(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP(O)(O)=O)N1C=NC2=C1N=CN=C2N
InChI Identifier
InChI=1S/C23H38N7O17P3S/c1-12(31)51-7-6-25-14(32)4-5-26-21(35)18(34)23(2,3)9-44-50(41,42)47-49(39,40)43-8-13-17(46-48(36,37)38)16(33)22(45-13)30-11-29-15-19(24)27-10-28-20(15)30/h10-11,13,16-18,22,33-34H,4-9H2,1-3H3,(H,25,32)(H,26,35)(H,39,40)(H,41,42)(H2,24,27,28)(H2,36,37,38)/t13-,16-,17-,18+,22-/m1/s1
InChI KeyZSLZBFCDCINBPY-ZSJPKINUSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as acyl coas. These are organic compounds containing a coenzyme A substructure linked to an acyl chain.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassFatty acyl thioesters
Direct ParentAcyl CoAs
Alternative Parents
Substituents
  • Coenzyme a or derivatives
  • Purine ribonucleoside 3',5'-bisphosphate
  • Purine ribonucleoside bisphosphate
  • Purine ribonucleoside diphosphate
  • Ribonucleoside 3'-phosphate
  • Pentose phosphate
  • Pentose-5-phosphate
  • Beta amino acid or derivatives
  • Glycosyl compound
  • N-glycosyl compound
  • 6-aminopurine
  • Monosaccharide phosphate
  • Organic pyrophosphate
  • Pentose monosaccharide
  • Imidazopyrimidine
  • Purine
  • Monoalkyl phosphate
  • Aminopyrimidine
  • Imidolactam
  • N-acyl-amine
  • N-substituted imidazole
  • Organic phosphoric acid derivative
  • Monosaccharide
  • Pyrimidine
  • Alkyl phosphate
  • Fatty amide
  • Phosphoric acid ester
  • Tetrahydrofuran
  • Imidazole
  • Azole
  • Heteroaromatic compound
  • Carbothioic s-ester
  • Secondary alcohol
  • Thiocarboxylic acid ester
  • Carboxamide group
  • Secondary carboxylic acid amide
  • Amino acid or derivatives
  • Sulfenyl compound
  • Thiocarboxylic acid or derivatives
  • Organoheterocyclic compound
  • Azacycle
  • Oxacycle
  • Carboxylic acid derivative
  • Organosulfur compound
  • Organic oxygen compound
  • Hydrocarbon derivative
  • Carbonyl group
  • Organic nitrogen compound
  • Primary amine
  • Organopnictogen compound
  • Organic oxide
  • Organooxygen compound
  • Organonitrogen compound
  • Alcohol
  • Amine
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Ontology
Physiological effectNot Available
Disposition
Biological locationRoute of exposureSource
Process
Naturally occurring process
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Experimental Chromatographic Properties

Experimental Collision Cross Sections

Adduct TypeData SourceCCS Value (Å2)Reference
[M-H]-Not Available246.0http://allccs.zhulab.cn/database/detail?ID=AllCCS00000281
[M+H]+Not Available247.7http://allccs.zhulab.cn/database/detail?ID=AllCCS00000281
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Membrane
  • Mitochondria
  • Nucleus
  • Endoplasmic reticulum
  • Golgi apparatus
  • Peroxisome
Biospecimen LocationsNot Available
Tissue Locations
  • Adipose Tissue
  • Brain
  • Platelet
  • Prostate
  • Skeletal Muscle
  • Spleen
Pathways
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB022491
KNApSAcK IDC00007259
Chemspider ID392413
KEGG Compound IDC00024
BioCyc IDACETYL-COA
BiGG ID33558
Wikipedia LinkAcetyl-CoA
METLIN ID6082
PubChem Compound444493
PDB IDNot Available
ChEBI ID15351
Food Biomarker OntologyNot Available
VMH IDACCOA
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis ReferenceTucek, S. The synthesis of acetyl coenzyme A and acetylcholine from citrate and acetate in the nerve endings of mammalian brain. Biochimica et Biophysica Acta, General Subjects (1966), 117(1), 278-80.
Material Safety Data Sheet (MSDS)Not Available
General References

Only showing the first 10 proteins. There are 179 proteins in total.

Enzymes

General function:
Involved in catalytic activity
Specific function:
Key enzyme in ketogenesis (ketone body formation). Terminal step in leucine catabolism.
Gene Name:
HMGCL
Uniprot ID:
P35914
Molecular weight:
34359.84
Reactions
3-Hydroxy-3-methylglutaryl-CoA → Acetyl-CoA + Acetoacetic aciddetails
General function:
Involved in ATP citrate synthase activity
Specific function:
ATP citrate-lyase is the primary enzyme responsible for the synthesis of cytosolic acetyl-CoA in many tissues. Has a central role in de novo lipid synthesis. In nervous tissue it may be involved in the biosynthesis of acetylcholine.
Gene Name:
ACLY
Uniprot ID:
P53396
Molecular weight:
120838.27
Reactions
ADP + Phosphate + Acetyl-CoA + Oxalacetic acid → Adenosine triphosphate + Citric acid + Coenzyme Adetails
Adenosine triphosphate + Citric acid + Coenzyme A → ADP + Phosphate + Acetyl-CoA + Oxalacetic aciddetails
General function:
Involved in transcription cofactor activity
Specific function:
Functions as histone acetyltransferase and regulates transcription via chromatin remodeling. Acetylates all four core histones in nucleosomes. Histone acetylation gives an epigenetic tag for transcriptional activation. Mediates cAMP-gene regulation by binding specifically to phosphorylated CREB protein. Also functions as acetyltransferase for nonhistone targets. Acetylates 'Lys-131' of ALX1 and acts as its coactivator in the presence of CREBBP. Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function. Acetylates HDAC1 leading to its inactivation and modulation of transcription. Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2. Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement. Can also mediate transcriptional repression. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. Acetylates FOXO1 and enhances its transcriptional activity.
Gene Name:
EP300
Uniprot ID:
Q09472
Molecular weight:
264159.725
Reactions
Acetyl-CoA + [histone] → Coenzyme A + acetyl-[histone]details
General function:
Involved in catalytic activity
Specific function:
The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2), and thereby links the glycolytic pathway to the tricarboxylic cycle.
Gene Name:
PDHB
Uniprot ID:
P11177
Molecular weight:
39233.1
General function:
Involved in transferase activity, transferring acyl groups other than amino-acyl groups
Specific function:
Not Available
Gene Name:
ACAT2
Uniprot ID:
Q9BWD1
Molecular weight:
41350.5
Reactions
Acetyl-CoA → Coenzyme A + Acetoacetyl-CoAdetails
Acetyl-CoA + Butyryl-CoA → Coenzyme A + 3-Oxohexanoyl-CoAdetails
General function:
Involved in transcription cofactor activity
Specific function:
Acetylates histones, giving a specific tag for transcriptional activation. Also acetylates non-histone proteins, like NCOA3 and FOXO1. Binds specifically to phosphorylated CREB and enhances its transcriptional activity toward cAMP-responsive genes. Acts as a coactivator of ALX1 in the presence of EP300.
Gene Name:
CREBBP
Uniprot ID:
Q92793
Molecular weight:
260991.825
Reactions
Acetyl-CoA + [histone] → Coenzyme A + acetyl-[histone]details
General function:
Involved in N-acetyltransferase activity
Specific function:
Enzyme which catalyzes the acetylation of polyamines. Substrate specificity: norspermidine > spermidine = spermine >> N(1)acetylspermine = putrescine.
Gene Name:
SAT2
Uniprot ID:
Q96F10
Molecular weight:
19154.905
Reactions
Acetyl-CoA + an alkane-alpha,omega-diamine → Coenzyme A + an N-acetyldiaminedetails
Acetyl-CoA + Putrescine → Coenzyme A + N-Acetylputrescinedetails
General function:
Involved in malonyl-CoA decarboxylase activity
Specific function:
Catalyzes the conversion of malonyl-CoA to acetyl-CoA. In the fatty acid biosynthesis MCD selectively removes malonyl-CoA and thus assures that methyl-malonyl-CoA is the only chain elongating substrate for fatty acid synthase and that fatty acids with multiple methyl side chains are produced. In peroxisomes it may be involved in degrading intraperoxisomal malonyl-CoA, which is generated by the peroxisomal beta-oxidation of odd chain-length dicarboxylic fatty acids.
Gene Name:
MLYCD
Uniprot ID:
O95822
Molecular weight:
55002.94
Reactions
Malonyl-CoA → Acetyl-CoA + CO(2)details
Malonyl-CoA → Acetyl-CoA + Carbon dioxidedetails
General function:
Involved in acetyl-CoA carboxylase activity
Specific function:
ACC-beta may be involved in the provision of malonyl-CoA or in the regulation of fatty acid oxidation, rather than fatty acid biosynthesis. Carries out three functions: biotin carboxyl carrier protein, biotin carboxylase and carboxyltransferase.
Gene Name:
ACACB
Uniprot ID:
O00763
Molecular weight:
276538.575
Reactions
Adenosine triphosphate + Acetyl-CoA + Hydrogen carbonate → ADP + Phosphate + Malonyl-CoAdetails
Acetyl-CoA + Carboxybiotin-carboxyl-carrier protein → Malonyl-CoA + Holo-[carboxylase]details
General function:
Involved in catalytic activity
Specific function:
Pyruvate carboxylase catalyzes a 2-step reaction, involving the ATP-dependent carboxylation of the covalently attached biotin in the first step and the transfer of the carboxyl group to pyruvate in the second. Catalyzes in a tissue specific manner, the initial reactions of glucose (liver, kidney) and lipid (adipose tissue, liver, brain) synthesis from pyruvate.
Gene Name:
PC
Uniprot ID:
P11498
Molecular weight:
129632.565

Transporters

General function:
Lipid transport and metabolism
Specific function:
Involved in translocation of long-chain fatty acids (LFCA) across the plasma membrane. The LFCA import appears to be hormone-regulated in a tissue-specific manner. In adipocytes, but not myocytes, insulin induces a rapid translocation of FATP1 from intracellular compartments to the plasma membrane, paralleled by increased LFCA uptake. May act directly as a bona fide transporter, or alternatively, in a cytoplasmic or membrane- associated multimeric protein complex to trap and draw fatty acids towards accumulation. Plays a pivotal role in regulating available LFCA substrates from exogenous sources in tissues undergoing high levels of beta-oxidation or triglyceride synthesis. May be involved in regulation of cholesterol metabolism. Has acyl-CoA ligase activity for long-chain and very-long-chain fatty acids
Gene Name:
SLC27A1
Uniprot ID:
Q6PCB7
Molecular weight:
71107.5

Only showing the first 10 proteins. There are 179 proteins in total.