You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
StatusDetected and Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2020-11-09 23:13:02 UTC
Secondary Accession Numbers
  • HMDB00244
Metabolite Identification
Common NameRiboflavin
DescriptionRiboflavin or vitamin B2 is an easily absorbed, water-soluble micronutrient with a key role in maintaining human health. Like the other B vitamins, it supports energy production by aiding in the metabolizing of fats, carbohydrates, and proteins. Vitamin B2 is also required for red blood cell formation and respiration, antibody production, and for regulating human growth and reproduction. It is essential for healthy skin, nails, hair growth and general good health, including regulating thyroid activity. Riboflavin is found in milk, eggs, malted barley, liver, kidney, heart, and leafy vegetables. Riboflavin is yellow or orange-yellow in color and in addition to being used as a food coloring it is also used to fortify some foods. It can be found in baby foods, breakfast cereals, sauces, processed cheese, fruit drinks and vitamin-enriched milk products. The richest natural source is yeast. It occurs in the free form only in the retina of the eye, in whey, and in urine; its principal forms in tissues and cells are as flavin mononucleotide and flavin adenine dinucleotide.
Vitamin b2ChEBI
Vitamin gChEBI
Benzo[g]pteridine riboflavin deriv.HMDB
e 101HMDB
FOOD Yellow 15HMDB
Russupteridine yellow IIIHMDB
San yellow bHMDB
Vitasan b2HMDB
Vitamin b 2HMDB
Chemical FormulaC17H20N4O6
Average Molecular Weight376.3639
Monoisotopic Molecular Weight376.138284392
IUPAC Name7,8-dimethyl-10-[(2S,3S,4R)-2,3,4,5-tetrahydroxypentyl]-2H,3H,4H,10H-benzo[g]pteridine-2,4-dione
Traditional Nameriboflavin
CAS Registry Number83-88-5
InChI Identifier
Chemical Taxonomy
Description belongs to the class of organic compounds known as flavins. Flavins are compounds containing a flavin (7,8-dimethyl-benzo[g]pteridine-2,4-dione) moiety, with a structure characterized by an isoalloaxzine tricyclic ring.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassPteridines and derivatives
Sub ClassAlloxazines and isoalloxazines
Direct ParentFlavins
Alternative Parents
  • Flavin
  • Diazanaphthalene
  • Quinoxaline
  • Pyrimidone
  • Pyrazine
  • Pyrimidine
  • Benzenoid
  • Heteroaromatic compound
  • Vinylogous amide
  • Secondary alcohol
  • Lactam
  • Polyol
  • Azacycle
  • Alcohol
  • Hydrocarbon derivative
  • Organic oxide
  • Organopnictogen compound
  • Organic oxygen compound
  • Primary alcohol
  • Organooxygen compound
  • Organonitrogen compound
  • Organic nitrogen compound
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Physiological effect

Health effect:


Route of exposure:


Biological location:


Naturally occurring process:


Industrial application:

Biological role:

Physical Properties
Experimental Properties
Melting Point290 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility0.085 mg/mLNot Available
LogP-1.46HANSCH,C ET AL. (1995)
Predicted Properties
Water Solubility0.66 g/LALOGPS
pKa (Strongest Acidic)5.97ChemAxon
pKa (Strongest Basic)-2.6ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count9ChemAxon
Hydrogen Donor Count5ChemAxon
Polar Surface Area155.05 ŲChemAxon
Rotatable Bond Count5ChemAxon
Refractivity96.27 m³·mol⁻¹ChemAxon
Polarizability37.51 ųChemAxon
Number of Rings3ChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Spectrum TypeDescriptionSplash KeyView
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-006x-4980000000-dd278a577316361d270aSpectrum
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-006x-4980000000-dd278a577316361d270aSpectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-0btc-9014000000-75f046dc3c6cb008690eSpectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (4 TMS) - 70eV, Positivesplash10-0zfs-5146149000-f9db57dd1ccd4a014604Spectrum
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-004i-0019000000-86365dedafa031aa7787Spectrum
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-0006-4390000000-ac1b59ab7cc2209f4241Spectrum
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-00dj-4900000000-72d33eb27b9bd6a13d9eSpectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Positivesplash10-004l-0569000000-874b71fdc78d04853bf0Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Negativesplash10-0a4i-0091000000-a82c54d3153103fcdb1fSpectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-qTof , Positivesplash10-004i-0239000000-659ca9fae9643f3ce73dSpectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF , negativesplash10-0a4i-0091000000-a82c54d3153103fcdb1fSpectrum
LC-MS/MSLC-MS/MS Spectrum - Linear Ion Trap , negativesplash10-0a4i-0090000000-2aff124ee1fc62c13844Spectrum
LC-MS/MSLC-MS/MS Spectrum - Linear Ion Trap , negativesplash10-0a4i-0090000000-f8b29c3e2c601a944a6cSpectrum
LC-MS/MSLC-MS/MS Spectrum - Linear Ion Trap , negativesplash10-0a4i-0090000000-4e8c9bd38ea0f5ae9a94Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF , positivesplash10-004l-0569000000-874b71fdc78d04853bf0Spectrum
LC-MS/MSLC-MS/MS Spectrum - Linear Ion Trap , positivesplash10-0006-0092000000-1f1be5508c1d50d8dff7Spectrum
LC-MS/MSLC-MS/MS Spectrum - Linear Ion Trap , positivesplash10-0006-0092000000-74bf0b86efe72fe37198Spectrum
LC-MS/MSLC-MS/MS Spectrum - Linear Ion Trap , positivesplash10-057i-0069000000-bb0522be4472e049dbc5Spectrum
LC-MS/MSLC-MS/MS Spectrum - Linear Ion Trap , positivesplash10-057i-0069000000-208440cf501d0b9050d7Spectrum
LC-MS/MSLC-MS/MS Spectrum - Linear Ion Trap , positivesplash10-006x-0029000000-8c3d72bf2a06d79bbd31Spectrum
LC-MS/MSLC-MS/MS Spectrum - Linear Ion Trap , positivesplash10-006x-0039000000-7d8dc991995cfc262ad1Spectrum
LC-MS/MSLC-MS/MS Spectrum - Linear Ion Trap , positivesplash10-0006-0092000000-4f524f1e6c8131751c92Spectrum
LC-MS/MSLC-MS/MS Spectrum - Linear Ion Trap , positivesplash10-0560-0069000000-edc332be3fcbf6d0c14bSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0a6r-1029000000-cb7561783d706b360970Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0bt9-4092000000-a884c2c509c2da1c9005Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0a6r-1190000000-1d77df8220a965f08454Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-007o-9068000000-99f78bac6ce18b370145Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0006-9141000000-70e4d57c08631d27b93dSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0006-9220000000-ddd6caad2f26c593ced0Spectrum
1D NMR1H NMR SpectrumNot AvailableSpectrum
2D NMR[1H,13C] 2D NMR SpectrumNot AvailableSpectrum
Biological Properties
Cellular Locations
  • Extracellular
Biospecimen Locations
  • Blood
  • Cerebrospinal Fluid (CSF)
  • Feces
  • Saliva
  • Urine
Tissue Locations
  • Erythrocyte
  • Heart
  • Kidney
  • Liver
  • Placenta
  • Prostate
Normal Concentrations
BloodDetected and Quantified0.845 (0.361-1.77) uMNewborn (0-30 days old)BothNormal
    • Geigy Scientific ...
BloodDetected and Quantified0.015 (0.0054-0.028) uMAdult (>18 years old)BothNormal details
BloodDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothNormal details
BloodDetected and Quantified0.385 (0.15-0.96) uMChildren (1-13 years old)BothNormal
    • Geigy Scientific ...
BloodDetected and Quantified0.530 (0.265-1.30) uMAdult (>18 years old)FemaleNormal
    • Geigy Scientific ...
BloodDetected and Quantified0.10-0.50 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified0.00797-0.0399 uMAdolescent (13-18 years old)Not SpecifiedNormal details
Cerebrospinal Fluid (CSF)Detected and Quantified0.35 +/- 0.05 uMAdult (>18 years old)Not SpecifiedNormal details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
SalivaDetected and Quantified0.710 +/- 0.180 uMAdult (>18 years old)Female
    • Sugimoto et al. (...
SalivaDetected and Quantified0.754 +/- 0.222 uMAdult (>18 years old)Not Specified
    • Sugimoto et al. (...
SalivaDetected and Quantified0.880 +/- 0.375 uMAdult (>18 years old)Female
    • Sugimoto et al. (...
SalivaDetected and Quantified0.058 +/- 0.048 uMAdult (>18 years old)BothNormal
    • Zerihun T. Dame, ...
SalivaDetected and Quantified0.578 +/- 0.157 uMAdult (>18 years old)Female
    • Sugimoto et al. (...
SalivaDetected and Quantified0.578 +/- 0.157 uMAdult (>18 years old)Not Specified
    • Sugimoto et al. (...
UrineDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothNormal details
UrineDetected and Quantified0.18 +/- 0.08 umol/mmol creatinineAdult (>18 years old)BothNormal
    • Geigy Scientific ...
UrineDetected and Quantified0.24 +/- 0.24 umol/mmol creatinineChildren (1-13 years old)BothNormal
    • Geigy Scientific ...
UrineDetected and Quantified0.04 +/- 0.01 umol/mmol creatinineNewborn (0-30 days old)BothNormal
    • Geigy Scientific ...
UrineDetected and Quantified0.0193 +/- 0.0139 umol/mmol creatinineChildren (1 - 13 years old)BothNormal details
UrineDetected and Quantified0.0255 +/- 0.0208 umol/mmol creatinineAdult (>18 years old)BothNormal details
Abnormal Concentrations
BloodDetected and Quantified0.015 +/- 0.018 uMAdolescent (13-18 years old)FemaleAnorexia nervosa details
BloodDetected and Quantified0.00502 uMAdolescent (13-18 years old)Not AvailableBrown-Vialetto-Van Laere Syndrome 1 details
Cerebrospinal Fluid (CSF)Detected and Quantified0.18 +/- 0.02 uMAdult (>18 years old)Not Specified
Cerebrospinal Fluid (CSF)Detected and Quantified0.14 +/- 0.06 uMAdult (>18 years old)Not Specified
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Colorectal cancer
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothColorectal Cancer details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Colorectal cancer
UrineDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Colorectal adenoma
UrineDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Cardiosvacular risk
UrineDetected and Quantified4.757 +/- 5.779 umol/mmol creatinineChildren (1 - 13 years old)Not Specified
Eosinophilic esophagitis
    • Mordechai, Hien, ...
Associated Disorders and Diseases
Disease References
Anorexia nervosa
  1. Capo-chichi CD, Gueant JL, Lefebvre E, Bennani N, Lorentz E, Vidailhet C, Vidailhet M: Riboflavin and riboflavin-derived cofactors in adolescent girls with anorexia nervosa. Am J Clin Nutr. 1999 Apr;69(4):672-8. [PubMed:10197568 ]
Brown-Vialetto-Van Laere Syndrome 1
  1. Udhayabanu T, Subramanian VS, Teafatiller T, Gowda VK, Raghavan VS, Varalakshmi P, Said HM, Ashokkumar B: SLC52A2 [p.P141T] and SLC52A3 [p.N21S] causing Brown-Vialetto-Van Laere Syndrome in an Indian patient: First genetically proven case with mutations in two riboflavin transporters. Clin Chim Acta. 2016 Nov 1;462:210-214. doi: 10.1016/j.cca.2016.09.022. Epub 2016 Oct 1. [PubMed:27702554 ]
  1. Dastur DK, Santhadevi N, Quadros EV, Avari FC, Wadia NH, Desai MN, Bharucha EP: The B-vitamins in malnutrition with alcoholism. A model of intervitamin relationships. Br J Nutr. 1976 Sep;36(2):143-59. [PubMed:182198 ]
Colorectal cancer
  1. Brown DG, Rao S, Weir TL, O'Malia J, Bazan M, Brown RJ, Ryan EP: Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016 Jun 6;4:11. doi: 10.1186/s40170-016-0151-y. eCollection 2016. [PubMed:27275383 ]
  2. Sinha R, Ahn J, Sampson JN, Shi J, Yu G, Xiong X, Hayes RB, Goedert JJ: Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations. PLoS One. 2016 Mar 25;11(3):e0152126. doi: 10.1371/journal.pone.0152126. eCollection 2016. [PubMed:27015276 ]
  3. Goedert JJ, Sampson JN, Moore SC, Xiao Q, Xiong X, Hayes RB, Ahn J, Shi J, Sinha R: Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 2014 Sep;35(9):2089-96. doi: 10.1093/carcin/bgu131. Epub 2014 Jul 18. [PubMed:25037050 ]
Eosinophilic esophagitis
  1. (). Mordechai, Hien, and David S. Wishart. .
Associated OMIM IDs
DrugBank IDDB00140
Phenol Explorer Compound IDNot Available
FooDB IDFDB012160
KNApSAcK IDC00001552
Chemspider ID431981
KEGG Compound IDC00255
BiGG IDNot Available
Wikipedia LinkRiboflavin
METLIN IDNot Available
PubChem Compound493570
PDB IDNot Available
ChEBI ID17015
Food Biomarker OntologyNot Available
MarkerDB IDMDB00000119
Synthesis ReferenceTishler, Max; Pfister, Karl, III; Babson, R. D.; Ladenburg, Kurt; Fleming, Ann J. Reaction between o-aminoazo compounds and barbituric acid. A new synthesis of riboflavin. Journal of the American Chemical Society (1947), 69 1487-92.
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Mathew JL, Kabi BC, Rath B: Anti-oxidant vitamins and steroid responsive nephrotic syndrome in Indian children. J Paediatr Child Health. 2002 Oct;38(5):450-37. [PubMed:12354259 ]
  2. Booth CK, Clark T, Fenn A: Folic acid, riboflavin, thiamine, and vitamin B-6 status of a group of first-time blood donors. Am J Clin Nutr. 1998 Nov;68(5):1075-80. [PubMed:9808225 ]
  3. Boisvert WA, Mendoza I, Castaneda C, De Portocarrero L, Solomons NW, Gershoff SN, Russell RM: Riboflavin requirement of healthy elderly humans and its relationship to macronutrient composition of the diet. J Nutr. 1993 May;123(5):915-25. [PubMed:8487103 ]
  4. Mikalunas V, Fitzgerald K, Rubin H, McCarthy R, Craig RM: Abnormal vitamin levels in patients receiving home total parenteral nutrition. J Clin Gastroenterol. 2001 Nov-Dec;33(5):393-6. [PubMed:11606856 ]
  5. Belko AZ, Obarzanek E, Roach R, Rotter M, Urban G, Weinberg S, Roe DA: Effects of aerobic exercise and weight loss on riboflavin requirements of moderately obese, marginally deficient young women. Am J Clin Nutr. 1984 Sep;40(3):553-61. [PubMed:6475825 ]
  6. Alexander M, Emanuel G, Golin T, Pinto JT, Rivlin RS: Relation of riboflavin nutriture in healthy elderly to intake of calcium and vitamin supplements: evidence against riboflavin supplementation. Am J Clin Nutr. 1984 Apr;39(4):540-6. [PubMed:6546833 ]
  7. Baeckert PA, Greene HL, Fritz I, Oelberg DG, Adcock EW: Vitamin concentrations in very low birth weight infants given vitamins intravenously in a lipid emulsion: measurement of vitamins A, D, and E and riboflavin. J Pediatr. 1988 Dec;113(6):1057-65. [PubMed:3142982 ]
  8. Maiani G, Mobarhan S, Nicastro A, Virgili F, Scaccini C, Ferro-Luzzi A: [Determination of glutathione reductase activity in erythrocytes and whole blood as an indicator of riboflavin nutrition]. Acta Vitaminol Enzymol. 1983;5(3):171-8. [PubMed:6650303 ]
  9. Bamji MS, Bhaskaram P, Jacob CM: Urinary riboflavin excretion and erythrocyte glutathione reductase activity in preschool children suffering from upper respiratory infections and measles. Ann Nutr Metab. 1987;31(3):191-6. [PubMed:3592624 ]
  10. Ajayi OA: Bioavailability of riboflavin from fortified palm juice. Plant Foods Hum Nutr. 1989 Dec;39(4):375-80. [PubMed:2631092 ]
  11. Kodentsova VM, Vrzhesinskaya OA, Spirichev VB: Fluorometric riboflavin titration in plasma by riboflavin-binding apoprotein as a method for vitamin B2 status assessment. Ann Nutr Metab. 1995;39(6):355-60. [PubMed:8678471 ]
  12. Bates CJ, Powers HJ: A simple fluorimetric assay for pyridoxamine phosphate oxidase in erythrocyte haemolysates: effects of riboflavin supplementation and of glucose 6-phosphate dehydrogenase deficiency. Hum Nutr Clin Nutr. 1985 Mar;39(2):107-15. [PubMed:4019261 ]
  13. Brun TA, Chen J, Campbell TC, Boreham J, Feng Z, Parpia B, Shen TF, Li M: Urinary riboflavin excretion after a load test in rural China as a measure of possible riboflavin deficiency. Eur J Clin Nutr. 1990 Mar;44(3):195-206. [PubMed:2369885 ]
  14. Mulherin DM, Thurnham DI, Situnayake RD: Glutathione reductase activity, riboflavin status, and disease activity in rheumatoid arthritis. Ann Rheum Dis. 1996 Nov;55(11):837-40. [PubMed:8976642 ]
  15. Rao PN, Levine E, Myers MO, Prakash V, Watson J, Stolier A, Kopicko JJ, Kissinger P, Raj SG, Raj MH: Elevation of serum riboflavin carrier protein in breast cancer. Cancer Epidemiol Biomarkers Prev. 1999 Nov;8(11):985-90. [PubMed:10566553 ]
  16. Zhou X, Huang C, Hong J, Yao S: [Nested case-control study on riboflavin levels in blood and urine and the risk of lung cancer]. Wei Sheng Yan Jiu. 2003 Nov;32(6):597-8, 601. [PubMed:14963913 ]
  17. Thurnham DI, Zheng SF, Munoz N, Crespi M, Grassi A, Hambidge KM, Chai TF: Comparison of riboflavin, vitamin A, and zinc status of Chinese populations at high and low risk for esophageal cancer. Nutr Cancer. 1985;7(3):131-43. [PubMed:3878498 ]
  18. Bates CJ, Prentice AM, Paul AA, Prentice A, Sutcliffe BA, Whitehead RG: Riboflavin status in infants born in rural Gambia, and the effect of a weaning food supplement. Trans R Soc Trop Med Hyg. 1982;76(2):253-8. [PubMed:7101408 ]
  19. Dror Y, Stern F, Komarnitsky M: Optimal and stable conditions for the determination of erythrocyte glutathione reductase activation coefficient to evaluate riboflavin status. Int J Vitam Nutr Res. 1994;64(4):257-62. [PubMed:7883462 ]
  20. Switzer BR, Stark AH, Atwood JR, Ritenbaugh C, Travis RG, Wu HM: Development of a urinary riboflavin adherence marker for a wheat bran fiber community intervention trial. Cancer Epidemiol Biomarkers Prev. 1997 Jun;6(6):439-42. [PubMed:9184778 ]
  21. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. doi: 10.1038/nature07762. [PubMed:19212411 ]
  22. Zempleni J, Galloway JR, McCormick DB: Pharmacokinetics of orally and intravenously administered riboflavin in healthy humans. Am J Clin Nutr. 1996 Jan;63(1):54-66. [PubMed:8604671 ]
  23. Elshenawy S, Pinney SE, Stuart T, Doulias PT, Zura G, Parry S, Elovitz MA, Bennett MJ, Bansal A, Strauss JF 3rd, Ischiropoulos H, Simmons RA: The Metabolomic Signature of the Placenta in Spontaneous Preterm Birth. Int J Mol Sci. 2020 Feb 4;21(3). pii: ijms21031043. doi: 10.3390/ijms21031043. [PubMed:32033212 ]

Only showing the first 10 proteins. There are 14 proteins in total.


General function:
Involved in acid phosphatase activity
Specific function:
Not Available
Gene Name:
Uniprot ID:
Molecular weight:
Flavin mononucleotide + Water → Riboflavin + Phosphatedetails
General function:
Involved in acid phosphatase activity
Specific function:
Acts on tyrosine phosphorylated proteins, low-MW aryl phosphates and natural and synthetic acyl phosphates. Isoform 3 does not possess phosphatase activity.
Gene Name:
Uniprot ID:
Molecular weight:
Flavin mononucleotide + Water → Riboflavin + Phosphatedetails
General function:
Involved in hydrolase activity
Specific function:
Involved in osteopontin/bone sialoprotein dephosphorylation. Its expression seems to increase in certain pathological states such as Gaucher and Hodgkin diseases, the hairy cell, the B-cell, and the T-cell leukemias.
Gene Name:
Uniprot ID:
Molecular weight:
Flavin mononucleotide + Water → Riboflavin + Phosphatedetails
General function:
Involved in acid phosphatase activity
Specific function:
A non-specific tyrosine phosphatase that dephosphorylates a diverse number of substrates under acidic conditions (pH 4-6) including alkyl, aryl, and acyl orthophosphate monoesters and phosphorylated proteins. Has lipid phosphatase activity and inactivates lysophosphatidic acid in seminal plasma. Isoform 2: the cellular form also has ecto-5'-nucleotidase activity in dorsal root ganglion (DRG) neurons. Generates adenosine from AMP which acts as a pain suppressor. Acts as a tumor suppressor of prostate cancer through dephosphorylation of ERBB2 and deactivation of MAPK-mediated signaling.
Gene Name:
Uniprot ID:
Molecular weight:
Flavin mononucleotide + Water → Riboflavin + Phosphatedetails
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOA preferentially oxidizes biogenic amines such as 5-hydroxytryptamine (5-HT), norepinephrine and epinephrine.
Gene Name:
Uniprot ID:
Molecular weight:
  1. Strolin Benedetti M, Tipton KF, Whomsley R: Amine oxidases and monooxygenases in the in vivo metabolism of xenobiotic amines in humans: has the involvement of amine oxidases been neglected? Fundam Clin Pharmacol. 2007 Oct;21(5):467-80. [PubMed:17868200 ]
General function:
Involved in methylenetetrahydrofolate reductase (NADPH) activity
Specific function:
Catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a co-substrate for homocysteine remethylation to methionine.
Gene Name:
Uniprot ID:
Molecular weight:
  1. Bates CJ, Fuller NJ: The effect of riboflavin deficiency on methylenetetrahydrofolate reductase (NADPH) (EC and folate metabolism in the rat. Br J Nutr. 1986 Mar;55(2):455-64. [PubMed:3676170 ]
  2. Macdonald HM, McGuigan FE, Fraser WD, New SA, Ralston SH, Reid DM: Methylenetetrahydrofolate reductase polymorphism interacts with riboflavin intake to influence bone mineral density. Bone. 2004 Oct;35(4):957-64. [PubMed:15454103 ]
General function:
Involved in phosphorylase activity
Specific function:
Phosphorylase is an important allosteric enzyme in carbohydrate metabolism. Enzymes from different sources differ in their regulatory mechanisms and in their natural substrates. However, all known phosphorylases share catalytic and structural properties.
Gene Name:
Uniprot ID:
Molecular weight:
General function:
Involved in catalytic activity
Specific function:
Broad specificity oxidoreductase that catalyzes the NADPH-dependent reduction of a variety of flavins, such as riboflavin, FAD or FMN, biliverdins, methemoglobin and PQQ (pyrroloquinoline quinone). Contributes to heme catabolism and metabolizes linear tetrapyrroles. Can also reduce the complexed Fe(3+) iron to Fe(2+) in the presence of FMN and NADPH. In the liver, converts biliverdin to bilirubin.
Gene Name:
Uniprot ID:
Molecular weight:
Riboflavin reduced + NADP → Riboflavin + NADPHdetails
Riboflavin reduced + NADP → Riboflavin + NADPH + Hydrogen Iondetails
  1. Russell TR, Demeler B, Tu SC: Kinetic mechanism and quaternary structure of Aminobacter aminovorans NADH:flavin oxidoreductase: an unusual flavin reductase with bound flavin. Biochemistry. 2004 Feb 17;43(6):1580-90. [PubMed:14769034 ]
  2. van Pee KH, Patallo EP: Flavin-dependent halogenases involved in secondary metabolism in bacteria. Appl Microbiol Biotechnol. 2006 May;70(6):631-41. Epub 2006 Mar 17. [PubMed:16544142 ]
General function:
Involved in riboflavin kinase activity
Specific function:
Catalyzes the phosphorylation of riboflavin (vitamin B2) to form flavin-mononucleotide (FMN).
Gene Name:
Uniprot ID:
Molecular weight:
Adenosine triphosphate + Riboflavin → ADP + Flavin mononucleotidedetails
  1. Werner R, Manthey KC, Griffin JB, Zempleni J: HepG2 cells develop signs of riboflavin deficiency within 4 days of culture in riboflavin-deficient medium. J Nutr Biochem. 2005 Oct;16(10):617-24. [PubMed:16081269 ]
  2. Solovieva IM, Kreneva RA, Errais Lopes L, Perumov DA: The riboflavin kinase encoding gene ribR of Bacillus subtilis is a part of a 10 kb operon, which is negatively regulated by the yrzC gene product. FEMS Microbiol Lett. 2005 Feb 1;243(1):51-8. [PubMed:15668000 ]
  3. Ishchuk OP, Iatsyshyn VIu, Dmytruk KV, Voronovs'kyi AIa, Fedorovych DV, Sybirnyi AA: [Construction of the flavinogenic yeast Candida famata strains with high riboflavin kinase activity using gene engineering]. Ukr Biokhim Zh (1999). 2006 Sep-Oct;78(5):63-9. [PubMed:17290783 ]
  4. Sandoval FJ, Roje S: An FMN hydrolase is fused to a riboflavin kinase homolog in plants. J Biol Chem. 2005 Nov 18;280(46):38337-45. Epub 2005 Sep 23. [PubMed:16183635 ]
  5. Bertollo CM, Oliveira AC, Rocha LT, Costa KA, Nascimento EB Jr, Coelho MM: Characterization of the antinociceptive and anti-inflammatory activities of riboflavin in different experimental models. Eur J Pharmacol. 2006 Oct 10;547(1-3):184-91. Epub 2006 Jul 26. [PubMed:16962092 ]
  6. Hirano G, Izumi H, Yasuniwa Y, Shimajiri S, Ke-Yong W, Sasagiri Y, Kusaba H, Matsumoto K, Hasegawa T, Akimoto M, Akashi K, Kohno K: Involvement of riboflavin kinase expression in cellular sensitivity against cisplatin. Int J Oncol. 2011 Apr;38(4):893-902. doi: 10.3892/ijo.2011.938. Epub 2011 Feb 9. [PubMed:21308351 ]
General function:
Involved in receptor activity
Specific function:
Riboflavin transporter. Riboflavin transport is Na(+)-independent but moderately pH-sensitive. Activity is strongly inhibited by riboflavin analogs, such as lumiflavin. Weakly inhibited by flavin adenine dinucleotide (FAD). In case of infection by retroviruses, acts as a cell receptor to retroviral envelopes similar to the porcine endogenous retrovirus (PERV-A).
Gene Name:
Uniprot ID:
Molecular weight:


General function:
Involved in ion transmembrane transporter activity
Specific function:
Involved in the renal elimination of endogenous and exogenous organic anions. Functions as organic anion exchanger when the uptake of one molecule of organic anion is coupled with an efflux of one molecule of endogenous dicarboxylic acid (glutarate, ketoglutarate, etc). Mediates the sodium-independent uptake of 2,3-dimercapto-1-propanesulfonic acid (DMPS). Mediates the sodium-independent uptake of p- aminohippurate (PAH), ochratoxin (OTA), acyclovir (ACV), 3'-azido- 3-'deoxythymidine (AZT), cimetidine (CMD), 2,4-dichloro- phenoxyacetate (2,4-D), hippurate (HA), indoleacetate (IA), indoxyl sulfate (IS) and 3-carboxy-4-methyl-5-propyl-2- furanpropionate (CMPF), cidofovir, adefovir, 9-(2- phosphonylmethoxyethyl) guanine (PMEG), 9-(2- phosphonylmethoxyethyl) diaminopurine (PMEDAP) and edaravone sulfate. PAH uptake is inhibited by p- chloromercuribenzenesulphonate (PCMBS), diethyl pyrocarbonate (DEPC), sulindac, diclofenac, carprofen, glutarate and okadaic acid. PAH uptake is inhibited by benzothiazolylcysteine (BTC), S-chlorotrifluoroethylcysteine (CTFC), cysteine S-conjugates S-dichlorovinylcysteine (DCVC), furosemide, steviol, phorbol 12-myristate 13-acetate (PMA), calcium ionophore A23187, benzylpenicillin, furosemide, indomethacin, bumetamide, losartan, probenecid, phenol red, urate, and alpha-ketoglutarate
Gene Name:
Uniprot ID:
Molecular weight:
  1. Kuze K, Graves P, Leahy A, Wilson P, Stuhlmann H, You G: Heterologous expression and functional characterization of a mouse renal organic anion transporter in mammalian cells. J Biol Chem. 1999 Jan 15;274(3):1519-24. [PubMed:9880528 ]

Only showing the first 10 proteins. There are 14 proteins in total.