| Record Information |
|---|
| Version | 5.0 |
|---|
| Status | Detected and Quantified |
|---|
| Creation Date | 2006-05-22 14:17:29 UTC |
|---|
| Update Date | 2022-03-07 02:49:25 UTC |
|---|
| HMDB ID | HMDB0005176 |
|---|
| Secondary Accession Numbers | - HMDB0005177
- HMDB0005178
- HMDB0005179
- HMDB0005180
- HMDB0005182
- HMDB0005183
- HMDB0005184
- HMDB0005185
- HMDB0005186
- HMDB0012923
- HMDB05176
- HMDB05177
- HMDB05178
- HMDB05179
- HMDB05180
- HMDB05182
- HMDB05183
- HMDB05184
- HMDB05185
- HMDB05186
- HMDB12923
|
|---|
| Metabolite Identification |
|---|
| Common Name | Dolichol-20 |
|---|
| Description | Dolichols are polyisoprenic molecule ubiquitously present in the lipid fraction of animal and plant tissues, discovered 40 years ago during experiments on the biosynthesis of ubiquinone. The molecular structure of dolichol comprises a sequence of unsaturated isoprenic units bearing a primary terminal hydroxyl group. The length of dolichyl chains depends on the species of the organism from which they are isolated. Mammalian dolichol generally is made up of 16 to 23 unsaturated isoprene units, and the terminal hydroxyl group may exist either free or esterified with fatty acids, phosphoric acid, and pyrophosphoric acid. In biological membranes, this linear polyisoprenoid compound may be located between the two leaflets of the lipid bilayer, close to the free end of the phospholipid fatty acid molecules. Metabolism and function of dolichol were largely unknown until recently. Synthesis of dolichol by the mevalonate pathway was demonstrated in vitro and in vivo in many tissues. The isoprenoid pyrophosphate intermediates are shared by the cholesterol, dolichol, and ubiquinone pathways, and treatment with drugs that block hydroxymethyl glutaryl coenzyme A reductase may significantly decrease their plasma and tissue levels. In humans, there is no apparent positive correlation between serum dolichol and tissue dolichol and age. In view of the total content of the body, half life of the total body dolichol, and dolichol content in the extracellular space, it was concluded that the dolichol in tissues probably derives from biosynthesis in those tissues and that relocation of dolichol via circulation cannot be prominent in vivo. The levels of dolichol in human serum have apparently no correlation to age or serum total cholesterol, and exhibit a linear correlation to high density lipoprotein cholesterols which may reflect the fact that the dolichols are associated with the high-density lipoprotein fraction. No enzymic pathways for dolichol degradation were described, but no case of dolichol-storage disease was reported. Shrinkage of tissue because of increased lysosomal degradation in the process of atrophy does not affect the dolichol content and concentration increases. Small quantities of dolichol that may be excreted into the urine at least in part is derived from the lysosomes of the excretory organ, and serum dolichol levels may be elevated in chronic cholestatic liver diseases. Recent evidence shows that phagocytosis may cause the degradation and disposal of the engulfed dolichol, possibly because of nonenzymatic free radical mediated decomposition. By means of a 1H nuclear magnetic resonance (NMR) analytical method, the hypothesis was substantiated that dolichol may act as a free-radical scavenger in the cell membranes and protect polyunsaturated fatty acids from peroxidation, and that it may undergo decomposition in the process. (PMID 15741281 ). |
|---|
| Structure | CC(CCO)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(\C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(\C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C InChI=1S/C100H164O/c1-81(2)41-22-42-82(3)43-23-44-83(4)45-24-46-84(5)47-25-48-85(6)49-26-50-86(7)51-27-52-87(8)53-28-54-88(9)55-29-56-89(10)57-30-58-90(11)59-31-60-91(12)61-32-62-92(13)63-33-64-93(14)65-34-66-94(15)67-35-68-95(16)69-36-70-96(17)71-37-72-97(18)73-38-74-98(19)75-39-76-99(20)77-40-78-100(21)79-80-101/h41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,100-101H,22-40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78-80H2,1-21H3/b82-43+,83-45+,84-47+,85-49+,86-51-,87-53+,88-55+,89-57+,90-59+,91-61+,92-63+,93-65+,94-67+,95-69-,96-71+,97-73+,98-75+,99-77+ |
|---|
| Synonyms | | Value | Source |
|---|
| Dolichol | HMDB | | Dolichol (C100) | HMDB | | Dolichol 20 | HMDB | | Dolichol phosphate | HMDB | | Dolichyl phosphate | HMDB |
|
|---|
| Chemical Formula | C100H164O |
|---|
| Average Molecular Weight | 1382.3716 |
|---|
| Monoisotopic Molecular Weight | 1381.27821987 |
|---|
| IUPAC Name | (6E,10E,14E,18E,22Z,26E,30E,34E,38E,42E,46E,50E,54E,58Z,62E,66E,70E,74E)-3,7,11,15,19,23,27,31,35,39,43,47,51,55,59,63,67,71,75,79-icosamethyloctaconta-6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,66,70,74,78-nonadecaen-1-ol |
|---|
| Traditional Name | dolichol |
|---|
| CAS Registry Number | 2067-66-5 |
|---|
| SMILES | CC(CCO)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(\C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(\C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C |
|---|
| InChI Identifier | InChI=1S/C100H164O/c1-81(2)41-22-42-82(3)43-23-44-83(4)45-24-46-84(5)47-25-48-85(6)49-26-50-86(7)51-27-52-87(8)53-28-54-88(9)55-29-56-89(10)57-30-58-90(11)59-31-60-91(12)61-32-62-92(13)63-33-64-93(14)65-34-66-94(15)67-35-68-95(16)69-36-70-96(17)71-37-72-97(18)73-38-74-98(19)75-39-76-99(20)77-40-78-100(21)79-80-101/h41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,100-101H,22-40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78-80H2,1-21H3/b82-43+,83-45+,84-47+,85-49+,86-51-,87-53+,88-55+,89-57+,90-59+,91-61+,92-63+,93-65+,94-67+,95-69-,96-71+,97-73+,98-75+,99-77+ |
|---|
| InChI Key | KEVPZUBEAUSPNJ-OYHKHEHLSA-N |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as polyprenols. These are prenols with more than 4 consecutive isoprene units. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lipids and lipid-like molecules |
|---|
| Class | Prenol lipids |
|---|
| Sub Class | Polyprenols |
|---|
| Direct Parent | Polyprenols |
|---|
| Alternative Parents | |
|---|
| Substituents | - Polyterpenoid
- Dolichol
- Polyprenol skeleton
- Fatty alcohol
- Fatty acyl
- Organic oxygen compound
- Hydrocarbon derivative
- Primary alcohol
- Organooxygen compound
- Alcohol
- Aliphatic acyclic compound
|
|---|
| Molecular Framework | Aliphatic acyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Ontology |
|---|
| Physiological effect | Not Available |
|---|
| Disposition | |
|---|
| Process | |
|---|
| Role | Not Available |
|---|
| Physical Properties |
|---|
| State | Solid |
|---|
| Experimental Molecular Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Experimental Chromatographic Properties | Not Available |
|---|
| Predicted Molecular Properties | |
|---|
| Predicted Chromatographic Properties | Predicted Collision Cross SectionsPredicted Retention Times Underivatized| Chromatographic Method | Retention Time | Reference |
|---|
| Measured using a Waters Acquity ultraperformance liquid chromatography (UPLC) ethylene-bridged hybrid (BEH) C18 column (100 mm × 2.1 mm; 1.7 μmparticle diameter). Predicted by Afia on May 17, 2022. Predicted by Afia on May 17, 2022. | -6.46 minutes | 32390414 | | Measured using a Waters Acquity ultraperformance liquid chromatography (UPLC) ethylene-bridged hybrid (BEH) C18 column (100 mm × 2.1 mm; 1.7 μmparticle diameter). Predicted by Afia on May 17, 2022. Predicted by Afia on May 17, 2022. | 3.39 minutes | 32390414 | | Predicted by Siyang on May 30, 2022 | 88.75 minutes | 33406817 | | Predicted by Siyang using ReTip algorithm on June 8, 2022 | 2.25 minutes | 32390414 | | AjsUoB = Accucore 150 Amide HILIC with 10mM Ammonium Formate, 0.1% Formic Acid | 129.6 seconds | 40023050 | | Fem_Long = Waters ACQUITY UPLC HSS T3 C18 with Water:MeOH and 0.1% Formic Acid | 12798.8 seconds | 40023050 | | Fem_Lipids = Ascentis Express C18 with (60:40 water:ACN):(90:10 IPA:ACN) and 10mM NH4COOH + 0.1% Formic Acid | 2228.5 seconds | 40023050 | | Life_Old = Waters ACQUITY UPLC BEH C18 with Water:(20:80 acetone:ACN) and 0.1% Formic Acid | 1030.5 seconds | 40023050 | | Life_New = RP Waters ACQUITY UPLC HSS T3 C18 with Water:(30:70 MeOH:ACN) and 0.1% Formic Acid | 1018.9 seconds | 40023050 | | RIKEN = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 697.7 seconds | 40023050 | | Eawag_XBridgeC18 = XBridge C18 3.5u 2.1x50 mm with Water:MeOH and 0.1% Formic Acid | 3636.5 seconds | 40023050 | | BfG_NTS_RP1 =Agilent Zorbax Eclipse Plus C18 (2.1 mm x 150 mm, 3.5 um) with Water:ACN and 0.1% Formic Acid | 3198.5 seconds | 40023050 | | HILIC_BDD_2 = Merck SeQuant ZIC-HILIC with ACN(0.1% formic acid):water(16 mM ammonium formate) | 233.6 seconds | 40023050 | | UniToyama_Atlantis = RP Waters Atlantis T3 (2.1 x 150 mm, 5 um) with ACN:Water and 0.1% Formic Acid | 8162.1 seconds | 40023050 | | BDD_C18 = Hypersil Gold 1.9µm C18 with Water:ACN and 0.1% Formic Acid | 2836.4 seconds | 40023050 | | UFZ_Phenomenex = Kinetex Core-Shell C18 2.6 um, 3.0 x 100 mm, Phenomenex with Water:MeOH and 0.1% Formic Acid | 3965.4 seconds | 40023050 | | SNU_RIKEN_POS = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 3050.9 seconds | 40023050 | | RPMMFDA = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 1500.7 seconds | 40023050 | | MTBLS87 = Merck SeQuant ZIC-pHILIC column with ACN:Water and :ammonium carbonate | 338.5 seconds | 40023050 | | KI_GIAR_zic_HILIC_pH2_7 = Merck SeQuant ZIC-HILIC with ACN:Water and 0.1% FA | 2199.0 seconds | 40023050 | | Meister zic-pHILIC pH9.3 = Merck SeQuant ZIC-pHILIC column with ACN:Water 5mM NH4Ac pH9.3 and 5mM ammonium acetate in water | 17.5 seconds | 40023050 |
Predicted Kovats Retention IndicesNot Available |
|---|