Record Information |
---|
Version | 5.0 |
---|
Status | Detected and Quantified |
---|
Creation Date | 2008-09-12 01:59:42 UTC |
---|
Update Date | 2022-03-07 02:50:42 UTC |
---|
HMDB ID | HMDB0009784 |
---|
Secondary Accession Numbers | - HMDB0062653
- HMDB09784
- HMDB62653
|
---|
Metabolite Identification |
---|
Common Name | PI(16:0/18:2(9Z,12Z)) |
---|
Description | PI(16:0/18:2(9Z,12Z)) is a phosphatidylinositol. Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PI(16:0/18:2(9Z,12Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of linoleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the linoleic acid moiety is derived from seed oils. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs contain almost exclusively stearic acid at carbon 1 and arachidonic acid at carbon 2. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol. |
---|
Structure | CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O)OC(=O)CCCCCCC\C=C/C\C=C/CCCCC InChI=1S/C43H79O13P/c1-3-5-7-9-11-13-15-17-18-20-22-24-26-28-30-32-37(45)55-35(34-54-57(51,52)56-43-41(49)39(47)38(46)40(48)42(43)50)33-53-36(44)31-29-27-25-23-21-19-16-14-12-10-8-6-4-2/h11,13,17-18,35,38-43,46-50H,3-10,12,14-16,19-34H2,1-2H3,(H,51,52)/b13-11-,18-17-/t35-,38-,39-,40+,41-,42-,43-/m1/s1 |
---|
Synonyms | Value | Source |
---|
1-16:0-2-18:2-Phosphatidylinositol | ChEBI | 1-Hexadecanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phospho-(1'-myo-inositol) | ChEBI | 1-Hexadecanoyl-2-linoleoyl-sn-glycero-3-phospho-D-myo-inositol | ChEBI | 1-Palmitoyl-2-linoleoyl-sn-glycero-3-phosphoinositol | ChEBI | 16:0-18:2-PI | ChEBI | Phosphatidylinositol(16:0/18:2) | ChEBI | Phosphatidylinositol(16:0/18:2omega6) | ChEBI | Phosphatidylinositol(34:2) | ChEBI | PI(16:0/18:2) | ChEBI | PI(16:0/18:2omega6) | ChEBI | PI(34:2) | ChEBI | PIno(16:0/18:2) | ChEBI | PIno(16:0/18:2omega6) | ChEBI | PIno(34:2) | ChEBI | PI(16:0/18:2(9Z,12Z)) | ChEBI | 1-Hexadecanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phospho-D-myo-inositol | HMDB | 1-Palmitoyl-2-linoleoyl-GPI | HMDB | 1-Palmitoyl-2-linoleoyl-glycero-3-phospho-(1'-myo-inositol) | HMDB | 1-Palmitoyl-2-linoleoyl-glycero-3-phospho-(1’-myo-inositol) | HMDB | 1-Palmitoyl-2-linoleoyl-sn-glycero-3-phospho-D-myo-inositol | HMDB | GPI(16:0/18:2(9Z,12Z)) | HMDB | GPI(16:0/18:2) | HMDB | GPI(16:0/18:2n6) | HMDB | GPI(16:0/18:2w6) | HMDB | GPI(34:2) | HMDB | PI(16:0/18:2n6) | HMDB | PI(16:0/18:2w6) | HMDB | Phosphatidylinositol(16:0/18:2(9Z,12Z)) | HMDB | Phosphatidylinositol(16:0/18:2n6) | HMDB | Phosphatidylinositol(16:0/18:2w6) | HMDB |
|
---|
Chemical Formula | C43H79O13P |
---|
Average Molecular Weight | 835.066 |
---|
Monoisotopic Molecular Weight | 834.525829602 |
---|
IUPAC Name | [(2R)-3-(hexadecanoyloxy)-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid |
---|
Traditional Name | (2R)-3-(hexadecanoyloxy)-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy([(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy)phosphinic acid |
---|
CAS Registry Number | 219584-66-4 |
---|
SMILES | CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O)OC(=O)CCCCCCC\C=C/C\C=C/CCCCC |
---|
InChI Identifier | InChI=1S/C43H79O13P/c1-3-5-7-9-11-13-15-17-18-20-22-24-26-28-30-32-37(45)55-35(34-54-57(51,52)56-43-41(49)39(47)38(46)40(48)42(43)50)33-53-36(44)31-29-27-25-23-21-19-16-14-12-10-8-6-4-2/h11,13,17-18,35,38-43,46-50H,3-10,12,14-16,19-34H2,1-2H3,(H,51,52)/b13-11-,18-17-/t35-,38-,39-,40+,41-,42-,43-/m1/s1 |
---|
InChI Key | BSNJSZUDOMPYIR-CUKLWHKZSA-N |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as 1-phosphatidyl-1d-myo-inositols. These are lipids containing a myo-inositol attached to the phosphate group of a glycerol-3-phosphate moiety, and two acyl chains linked to the glycerol at the O1- and O2- positions, through ester linkages. |
---|
Kingdom | Organic compounds |
---|
Super Class | Lipids and lipid-like molecules |
---|
Class | Glycerophospholipids |
---|
Sub Class | Glycerophosphoinositols |
---|
Direct Parent | 1-phosphatidyl-1D-myo-inositols |
---|
Alternative Parents | |
---|
Substituents | - 1-phosphatidyl-1d-myo-inositol
- Inositol phosphate
- Cyclohexanol
- Fatty acid ester
- Dialkyl phosphate
- Cyclitol or derivatives
- Dicarboxylic acid or derivatives
- Organic phosphoric acid derivative
- Phosphoric acid ester
- Alkyl phosphate
- Fatty acyl
- Cyclic alcohol
- Secondary alcohol
- Carboxylic acid ester
- Polyol
- Carboxylic acid derivative
- Alcohol
- Hydrocarbon derivative
- Organic oxide
- Organic oxygen compound
- Organooxygen compound
- Carbonyl group
- Aliphatic homomonocyclic compound
|
---|
Molecular Framework | Aliphatic homomonocyclic compounds |
---|
External Descriptors | - 1-hexadecanoyl-2-acyl-sn-glycero-3-phospho-1D-myo-inositol (CHEBI:73212 )
|
---|
Ontology |
---|
Physiological effect | |
---|
Disposition | |
---|
Process | |
---|
Role | Not Available |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Molecular Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Experimental Chromatographic Properties | Not Available |
---|
Predicted Molecular Properties | |
---|
Predicted Chromatographic Properties | Predicted Collision Cross SectionsPredicted Kovats Retention IndicesUnderivatized |
---|
| GC-MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
Predicted GC-MS | Predicted GC-MS Spectrum - PI(16:0/18:2(9Z,12Z)) GC-MS (Non-derivatized) - 70eV, Positive | Not Available | 2021-10-13 | Wishart Lab | View Spectrum |
MS/MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - PI(16:0/18:2(9Z,12Z)) 10V, Negative-QTOF | splash10-001i-0000000090-06d9513324fc7d303a96 | 2021-09-24 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - PI(16:0/18:2(9Z,12Z)) 20V, Negative-QTOF | splash10-001i-0000000090-06d9513324fc7d303a96 | 2021-09-24 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - PI(16:0/18:2(9Z,12Z)) 40V, Negative-QTOF | splash10-012c-0075590010-8b3e4e9735b0a7e77d24 | 2021-09-24 | Wishart Lab | View Spectrum |
NMR SpectraSpectrum Type | Description | Deposition Date | Source | View |
---|
Predicted 1D NMR | 13C NMR Spectrum (1D, 100 MHz, H2O, predicted) | 2022-08-22 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | 2022-08-22 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 1000 MHz, H2O, predicted) | 2022-08-22 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | 2022-08-22 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 200 MHz, H2O, predicted) | 2022-08-22 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | 2022-08-22 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 300 MHz, H2O, predicted) | 2022-08-22 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | 2022-08-22 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 400 MHz, H2O, predicted) | 2022-08-22 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | 2022-08-22 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 500 MHz, H2O, predicted) | 2022-08-22 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | 2022-08-22 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 600 MHz, H2O, predicted) | 2022-08-22 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | 2022-08-22 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 700 MHz, H2O, predicted) | 2022-08-22 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | 2022-08-22 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 800 MHz, H2O, predicted) | 2022-08-22 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | 2022-08-22 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 900 MHz, H2O, predicted) | 2022-08-22 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | 2022-08-22 | Wishart Lab | View Spectrum |
|
---|
General References | - Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
- Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
- Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
- Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
- Divecha N, Irvine RF: Phospholipid signaling. Cell. 1995 Jan 27;80(2):269-78. [PubMed:7834746 ]
- Majerus PW, Ross TS, Cunningham TW, Caldwell KK, Jefferson AB, Bansal VS: Recent insights in phosphatidylinositol signaling. Cell. 1990 Nov 2;63(3):459-65. [PubMed:2225061 ]
- Elshenawy S, Pinney SE, Stuart T, Doulias PT, Zura G, Parry S, Elovitz MA, Bennett MJ, Bansal A, Strauss JF 3rd, Ischiropoulos H, Simmons RA: The Metabolomic Signature of the Placenta in Spontaneous Preterm Birth. Int J Mol Sci. 2020 Feb 4;21(3). pii: ijms21031043. doi: 10.3390/ijms21031043. [PubMed:32033212 ]
- Cevc, Gregor (1993). Phospholipids Handbook. Marcel Dekker.
- Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.
|
---|